首页> 外文OA文献 >Energy Selective Contacts Based on Quantum Well Structures of Al2O3 and Group IV Materials for Hot Carrier Solar Cells
【2h】

Energy Selective Contacts Based on Quantum Well Structures of Al2O3 and Group IV Materials for Hot Carrier Solar Cells

机译:基于Al2O3和IV族材料的量子阱结构的热载体太阳能电池的能量选择性接触

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study aims to realize effective energy selective contacts (ESCs) for hot carrier solar cells (HCSCs) by using quantum well structures based on silicon or germanium wells. HCSCs require highly selective ESCs to extract optimal hot carriers only, in order to achieve high efficiency. ESCs rely on resonant tunnelling phenomena in ultrathin quantum well devices such as double-barrier resonant tunnelling diodes (DB RTD). To find suitable barrier materials for Si and Ge, an in-depth review is carried out to sort previous DBRTDs according to their materials and to compare their performance, by which Al2O3 is identified as the most potential barrier material. Two experimental approaches are carried out to construct DBRTDs with amorphous Al2O3 (a-Al2O3) and crystalline Al2O3 (c-Al2O3) barriers, respectively. For a-Al2O3 barriers, two types of wells, thermally annealed nanocrystalline Ge (nc-Ge) films and Si quantum dots (QDs) deposited by Langmuir-Blodgett (LB) method, are employed. For the c-Al2O3 barriers, sputtering and pulsed laser deposition (PLD) are used to grow hetero-epitaxial gamma-Al2O3 films on Si substrates. The DBRTD based on a-Al2O3/nc-Ge achieves room temperature resonant tunnelling with peak to valley ratio (PVCR) 2.43, full width at half maximum (FWHM) 0.05V, and peak current density (PCD) 2.1A/cm2, applicable for ESCs. High selection with a quality factor (PVCR 20.5/FWHM 0.012V) 1708/V has been achieved by the DBRTD of a-Al2O3/Si QD at room temperature, very promising for the ESC purpose. A 3nm strained layer of epitaxial gamma-Al2O3 is achieved by sputtering on Si (100) substrates, with ideal interfaces for RTD purpose. The novel e-beam annealed epitaxy of gamma-Al2O3 on Si (111) substrates is observed, with thick strained layers up to 14nm. PLD achieves 56nm thick relaxed hetero-epitaxial gamma-Al2O3 films on Si (111) substrates, potential for RTD and the epitaxy of III-V materials on Si. To integrate ESCs with HCSCs, calculations based on conservation model reveal ESCs of ultralow interface thermal conductance could enable HCSCs to achieve high efficiency, with relatively short carrier thermal lifetime. This work has successfully achieved two novel devices, developed two new approaches, and designed a new way to construct and integrate ESCs into HCSCs.
机译:这项研究旨在通过使用基于硅或锗阱的量子阱结构来实现热载太阳能电池(HCSC)的有效能量选择接触(ESC)。 HCSC要求高度选择性的ESC仅提取最佳的热载流子,以实现高效率。 ESC依靠超薄量子阱器件中的共振隧穿现象,例如双势垒共振隧穿二极管(DB RTD)。为了找到适合Si和Ge的阻挡材料,我们进行了深入审查,以根据以前的DBRTD的材料对其进行分类,并比较它们的性能,据此Al2O3被认为是最具潜力的阻挡材料。进行了两种实验方法来分别构造具有非晶态Al2O3(a-Al2O3)和结晶Al2O3(c-Al2O3)势垒的DBRTD。对于a-Al2O3势垒,采用两种类型的阱,即通过Langmuir-Blodgett(LB)方法沉积的热退火纳米晶Ge(nc-Ge)膜和Si量子点(QD)。对于c-Al2O3势垒,溅射和脉冲激光沉积(PLD)用于在Si衬底上生长异质外延γ-Al2O3膜。基于a-Al2O3 / nc-Ge的DBRTD可实现室温共振隧穿,其峰谷比(PVCR)为2.43,半峰全宽(FWHM)为0.05V,峰值电流密度(PCD)为2.1A / cm2用于电调。在室温下通过a-Al2O3 / Si QD的DBRTD实现了对高品质因子(PVCR 20.5 / FWHM 0.012V)1708 / V的高度选择,这对于ESC用途非常有希望。外延γ-Al2O3的3nm应变层是通过在Si(100)衬底上进行溅射获得的,具有用于RTD的理想界面。观察到了新颖的电子束退火外延生长在Si(111)衬底上的γ-Al2O3,其厚应变层高达14nm。 PLD在Si(111)衬底上实现了56nm厚的弛豫异质外延γ-Al2O3薄膜,RTD潜力和Si-上III-V材料的外延。为了将ESC与HCSC集成在一起,基于保守模型的计算表明,超低界面热导率的ESC可以使HCSC在相对较短的载流子热寿命下实现高效率。这项工作成功地实现了两种新颖的设备,开发了两种新的方法,并设计了一种将ESC构建和集成到HCSC中的新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号