首页> 外文OA文献 >Dynamic Modeling and Control of Free-Flying Space Robots
【2h】

Dynamic Modeling and Control of Free-Flying Space Robots

机译:自由飞行空间机器人的动力学建模与控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Free-Flying Space Robots (FFSRs) have the potential to assemble large space structures in orbit autonomously or telerobotically instead of time-consuming, risky and expensive astronaut Extra Vehicular Activities (EVA). However, dynamic coupling between the space manipulator and the spacecraft base can introduce modelling and control problems distinguished from fix-base robots. In this thesis, systematic modelling and control approaches for an FFSR are presented. Before proceeding to a complex on-orbit assembly case where FFSRs are used, a simple on-orbit assembly case, i.e. a deploying spacecraft is first analyzed. The subsequent chapters then investigate modeling, motion control and force control of an FFSR.A robust controller is developed for a deploying spacecraft based on the twisting algorithm to control its attitude despite the substantial inertia change caused by structural reconfiguration. The controller delivers smooth control torques which are perfectly practical for the control of Reaction Wheels (RWs) and is able to steer the satellite to the desired orientation with reduced settling times.In the on-orbit assembly case where FFSRs are used, a comprehensive dynamic model for a reaction-wheel actuated FFSR is first presented. The reformulated model incorporates the contribution of reaction-wheel momentum to the entire system. Based on the decoupled form of the model, two types of robust controllers are developed to implement coordinated control of both the space manipulator and the spacecraft in the presence of system uncertainties. The control methodologies can be applied for both the approaching phase and post-capture phase. It is shown that the controllers successfully achieve motion control for each sub-channel of the system, including the attitude states and manipulator motion states.To implement target capture, a new control-oriented model structure for an FFSR is proposed. The developed model allows simultaneous end-effector motion/force control and active base attitude control. Hybrid motion and force control method is extended to enforce the FFSR to track a desired trajectory of contact force which incorporates the consistent motion between FFSR’s end-effector and the floating target. Meanwhile, attitude control of the spacecraft is achieved by taking the constraint forces from the articulated joint as disturbances.All the control approaches are verified through numerical simulations in each corresponding chapter.
机译:自由飞行太空机器人(FFSR)具有自动或遥控机器人在轨道上组装大型空间结构的潜力,而不是费时,高风险和昂贵的宇航员额外车辆活动(EVA)。但是,空间操纵器与航天器基座之间的动态耦合可能会引入建模和控制问题,而这些问题与固定基座机器人有所不同。本文提出了一种FFSR的系统建模和控制方法。在进行使用FFSR的复杂在轨装配案例之前,首先要分析一个简单的在轨装配案例,即正在部署的航天器。随后的各章将研究FFSR的建模,运动控制和力控制。尽管结构重新配置导致惯性发生了很大的变化,但仍基于扭曲算法为正在部署的航天器开发了一种鲁棒的控制器,以控制其姿态。该控制器可提供平滑的控制扭矩,非常适合控制反作用轮(RW),并能够在减少建立时间的情况下将卫星转向所需的方向。在使用FFSR的在轨组装情况下,全面的动态首先介绍了反作用轮驱动的FFSR模型。重新制定的模型结合了反作用轮动量对整个系统的贡献。基于模型的解耦形式,开发了两种类型的鲁棒控制器,以在存在系统不确定性的情况下实现对空间操纵器和航天器的协调控制。控制方法可以应用于接近阶段和捕获后阶段。结果表明,控制器成功地实现了系统每个子通道的运动控制,包括姿态状态和机械手的运动状态。为了实现目标捕获,提出了一种新的面向控制的FFSR模型结构。开发的模型允许同时执行末端执行器运动/力控制和主动基础姿态控制。扩展了混合运动和力控制方法,以强制FFSR跟踪所需的接触力轨迹,该轨迹将FFSR的末端执行器和浮动目标之间的一致运动纳入其中。同时,以关节的约束力为干扰,实现了航天器的姿态控制。在每一章中均通过数值模拟验证了所有控制方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号