首页> 外文OA文献 >Towards adaptive argumentation learning systems : theoretical and practical considerations in the design of argumentation learning systems
【2h】

Towards adaptive argumentation learning systems : theoretical and practical considerations in the design of argumentation learning systems

机译:走向自适应论证学习系统:论证学习系统设计中的理论和实践考虑

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation addresses four issues of pivotal importance in realizing the promises of adaptive argumentation learning systems: (1) User interface: How can argumentation user interfaces be designed to effectively structure and support problem solving, peer interaction, and learning? (2) Software architecture: How can software architectures of adaptive argumentation learning systems be designed to be employable across different argumentation domains and application scenarios in a flexible and cost-effective manner? (3) Diagnostics: How can user behavior be analyzed, automatically and accurately, to drive automated adaptations and help generation? (4) Adaptation: How can strategies for automated adaptation and support be designed to promote problem solving, peer interaction, and learning in an optimal fashion?Regarding issue (1), this dissertation investigates argument diagrams and structured discussion interfaces, two areas of focal interest in argumentation learning research during the past decades. The foundation for such structuring approaches is given by theories of learning and teaching with knowledge representations (theory of representational guidance) and collaboration scripts (script theory of guidance in computer-supported collaborative learning). This dissertation brings these two strands of research together and presents a computer-based learning environment that combines both approaches to support students in conducting high-quality discussions of controversial texts. An empirical study confirms that this combined approach has positive impact on the quality of discussions, thus, underpins the theoretical basis of the approach.Regarding issue (2), this dissertation presents a software framework for enhancing argumentation systems with adaptive support mechanisms. Adaptive support functionality of past argumentation systems has been tailored to particular domains and application scenarios. A novel software framework is presented that abstracts from the specific demands of different domains and application scenarios to provide a more general approach. The approach comprises an extensive configuration subsystem that allows the flexible definition of intelligent software agents, that is, software components able to reason and act autonomously to help students engage in fruitful learning activities. A graphical authoring tool has been conceptualized and implemented to simplify the process of defining and administering software agents beyond what has been achieved with the provided framework system. Among other things, the authoring tool allows, for the first time, specifying relevant patterns in argument diagrams using a graphical language. Empirical results indicate the high potential of the authoring approach but also challenges for future research. Regarding issue (3), the dissertation investigates two alternative approaches to automatically analyzing argumentation learning activities: the knowledge-driven and the data-driven analysis method. The knowledge-driven approach utilizes a pattern search component to identify relevant structures in argument diagrams based on declarative pattern specifications. The capabilities and appropriateness of this approach are demonstrated through three exemplary applications, for which pedagogically relevant patterns have been defined and implemented within the component. The approach proves particularly useful for patterns of limited complexity in scenarios with sufficient expert knowledge available. The data-driven approach is based on machine learning techniques, which have been employed to induce computational classifiers for important aspects of graphical online discussions, such as off-topic contributions, reasoned claims, and question-answer interactions. Validation results indicate that this approach can be realistically used even for complex classification tasks involving natural language. This research constitutes the first investigation on the use of machine learning techniques to analyze diagram-based educational discussions. The dissertation concludes with discussing the four addressed research challenges in the broader context of existing theories and empirical results. The pros and cons of different options in the design of argumentation learning systems are juxtaposed; areas for future research are identified. This final part of the dissertation gives researchers and practitioners a synopsis of the current state of the art in the design of argumentation learning systems and its theoretical and empirical underpinning. Special attention is paid to issue (4), with an in-depth discussion of existing adaptation approaches and corresponding empirical results.
机译:本文讨论了在实现自适应论证学习系统的承诺中至关重要的四个问题:(1)用户界面:如何设计论证用户界面来有效地构建和支持问题解决,同伴交互和学习? (2)软件体系结构:自适应论证学习系统的软件体系结构如何设计为可以灵活,经济高效地跨不同论证领域和应用场景使用? (3)诊断:如何自动,准确地分析用户行为,以推动自动适应和帮助产生? (4)适应:如何设计自动适应和支持策略以最佳方式促进问题解决,同伴交互和学习?关于问题(1),本论文研究了论点图和结构化的讨论界面,这是两个重点领域在过去的几十年中对论证学习研究产生了兴趣。这种结构化方法的基础由具有知识表示形式(表示指导理论)和协作脚本(计算机支持的协作学习中的指导脚本理论)的学与教理论提供。本文将这两个方面的研究结合在一起,并提出了一个基于计算机的学习环境,该环境结合了两种方法来支持学生进行有争议的文本的高质量讨论。一项实证研究表明,这种结合的方法对讨论的质量具有积极的影响,从而为该方法的理论基础奠定了基础。关于问题(2),本文提出了一种利用自适应支持机制增强论证系统的软件框架。过去的论证系统的自适应支持功能已针对特定领域和应用场景进行了量身定制。提出了一种新颖的软件框架,该框架从不同领域和应用场景的特定需求中进行了抽象,以提供一种更通用的方法。该方法包括一个广泛的配置子系统,该子系统允许灵活定义智能软件代理,即能够推理和自主采取行动以帮助学生从事卓有成效的学习活动的软件组件。图形创作工具已得到概念化和实现,以简化定义和管理软件代理的过程,这超出了所提供的框架系统所能实现的范围。除其他外,创作工具首次允许使用图形语言在自变量图中指定相关模式。实证结果表明,该创作方法具有很高的潜力,但也对未来的研究提出了挑战。关于问题(3),本文研究了两种自动分析论证学习活动的替代方法:知识驱动和数据驱动分析方法。知识驱动的方法利用模式搜索组件基于声明性模式规范来识别自变量图中的相关结构。通过三个示例性应用程序演示了此方法的功能和适当性,为此在组件内定义并实现了教学相关的模式。在具有足够的专业知识的情况下,该方法对于复杂性有限的模式特别有用。数据驱动的方法基于机器学习技术,该技术已被用来为图形化在线讨论的重要方面(例如,离题贡献,有理据的主张和问答互动)引入计算分类器。验证结果表明,该方法甚至可以用于涉及自然语言的复杂分类任务。这项研究是对使用机器学习技术来分析基于图的教育讨论的首次调查。论文最后在现有理论和实证结果的更广泛背景下讨论了四个已解决的研究挑战。争论学习系统设计中不同选择的优缺点并列;确定了未来研究的领域。论文的最后部分为研究人员和从业人员提供了论证学习系统设计及其理论和经验基础的最新发展概况。特别关注问题(4),深入讨论现有的适应方法和相应的经验结果。

著录项

  • 作者

    Scheuer Oliver;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号