首页> 外文OA文献 >Statistical analysis of K 2 x 2 tables: a comparative study of estimators/test statistics for association and homogeneity.
【2h】

Statistical analysis of K 2 x 2 tables: a comparative study of estimators/test statistics for association and homogeneity.

机译:K 2 x 2表的统计分析:估计量/检验统计量的关联性和同质性的比较研究。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In order to control for confounding variables, epidemiologists often obtain data in the form of a 2 x 2 table. One variable is usually the disease status, while the other variable represents a dichotomous exposure variable that is suspected of being a risk factor. If a confounding variable is present, the data are often stratified into several 2 x 2 tables. The objectives of the analysis are to test for the association between the suspected risk factor and the disease and to estimate the strength of this relationship. Before estimating a common odds ratio, it is important to check whether the odds ratios are homogeneous. This paper presents the results of a Monte Carlo study that was performed to determine the size and power of a number of tests of association and homogeneity when the data are sparse. We also evaluated the performance of three estimators of the common odds ratio. For the Monte Carlo studies, equal numbers of cases and controls were used in a wide variety of sparse data situations. On the basis of these studies, we recommend the Breslow-Day test for nonsparse data, and the T4 and T5 statistics for sparse data to test for homogeneity. The Mantel-Haenszel test of association is recommended for sparse and nonsparse data sets. With sparse data, none of the odds ratio estimators are entirely satisfactory.
机译:为了控制变量的混淆,流行病学家通常以2 x 2表格的形式获取数据。一个变量通常是疾病状态,而另一个变量代表被怀疑是危险因素的二分暴露变量。如果存在混淆变量,则数据通常分层为几个2 x 2表。分析的目的是测试可疑危险因素与疾病之间的关联,并评估这种关系的强度。在估计共同的优势比之前,重要的是要检查优势比是否同质。本文介绍了一项蒙特卡洛研究的结果,该研究的目的是确定数据稀疏时关联和同质性测试的数量和功效。我们还评估了三个具有共同优势比的估计量的性能。对于蒙特卡洛研究,在各种各样的稀疏数据情况下使用了相同数量的病例和对照。在这些研究的基础上,我们建议对非稀疏数据进行Breslow-Day检验,并为稀疏数据推荐T4和T5统计数据,以检验同质性。对于稀疏和非稀疏数据集,建议使用Mantel-Haenszel关联测试。对于稀疏数据,没有一个比值比估计器完全令人满意。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号