首页> 外文OA文献 >The Dynamics Of Information Diffusion On On-Line Social Networks
【2h】

The Dynamics Of Information Diffusion On On-Line Social Networks

机译:在线社交网络上的信息传播动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Although there has been a long history of studying the diffusion of information in various social science fields, existing theories are mostly built on direct observations in small networks or survey responses from large samples. As a result, it is hard to verify or refute these theories empirically on a large scale. In recent years, the abundance of digital records of online interactions has provided us for the first time both explicit network structure and detailed dynamics, supporting global-scale, quantitative study of diffusion in the real world. Using these large scale datasets collected from social media sites, we are able to dissect and study the process of information diffusion in its three components: people, information, and network. This thesis mainly addresses a few long-standing questions about each component, including: "who influences whom?", "how do different types of information spread?", and "how does the network structure impact the diffusion process?" In our search of answers for these questions, we realize that these three components are interconnected, constantly interacting with each other in real-world diffusion processes. Thus our results on each component should not be taken in isolation but be viewed interdependently. To understand who influences whom in today's hybrid communication environment, we study people's influence on social media based on their role in the global media ecosystem. By categorizing Twitter accounts into elite (i.e. celebrities, media outlets, organizations, and bloggers) and ordinary users, we find a striking concentration of attention on a minority of elite users, and significant homophily within elite categories. On the other hand, following the definition of "opinion leaders" in the classical "two-step flow" theory, we find a large population of opinion leaders who serve as a layer of intermediaries between the elite users and the masses. The next question we ask is the role of content in the diffusion process. In contrast to previous research on the virality of information, we switch our focus to the persistence of information, trying to understand why certain content keeps on spreading in social media for a long time while most does not. First, we see an interaction effect, from both people and content, on the lifespan of information. As a result, there is a significant difference in lifespan, for information broadcast by different categories of users. Second, we find a strong association between the linguistic style of content and its temporal dynamics: rapidly-fading information contains significantly more words related to negative emotion, actions, and more complicated cognitive processes, whereas persistent information contains more words related to positive emotion, leisure, and lifestyle. In the end, we conduct a longitudinal study of the local and global structure of several large social networks, asking how and where disengagement happens in the social graph. We find that, although there is a significant correlation in both arrival and departure among friends, the dynamics of departure behave differently from the dynamics of arrival. In particular, for the majority of users with a sufficient number (e.g., greater than 20) of friends, departure is best predicted by the overall fraction of active friends within a user's neighborhood, independent of the size of the neighborhood. We also find that active users tend to belong to a core that is densifying and is significantly denser than the inactive users, and the inactive set of users exhibit a higher density and lower conductance than the degree distribution alone can explain. These two aspects suggest that nodes at the fringe are more likely to depart and subsequent departures are correlated among neighboring nodes in tightly-knit communities.
机译:尽管研究各个社会科学领域的信息传播已有很长的历史,但现有的理论主要建立在小型网络中的直接观察或大型样本的调查响应的基础上。结果,很难从经验上大规模地验证或驳斥这些理论。近年来,大量的在线互动数字记录首次为我们提供了明确的网络结构和详细的动态信息,支持了全球范围内对现实世界中扩散的定量研究。使用从社交媒体站点收集的这些大规模数据集,我们能够剖析和研究信息传播过程的三个组成部分:人员,信息和网络。本文主要针对每个组件解决一些长期存在的问题,包括:“谁影响谁?”,“不同类型的信息如何传播?”以及“网络结构如何影响传播过程?”。在寻找这些问题的答案时,我们意识到这三个组件是相互联系的,在现实世界的扩散过程中不断相互影响。因此,我们在每个组件上的结果不应孤立地看待,而应相互依存。为了了解在当今的混合通信环境中谁会影响谁,我们根据人们在全球媒体生态系统中的作用来研究人们对社交媒体的影响。通过将Twitter帐户分为精英(即名人,媒体,组织和博客作者)和普通用户,我们发现注意力集中在少数精英用户上,并且在精英类别中也有很多同质人。另一方面,遵循经典的“两步流”理论中“意见领袖”的定义,我们发现了大量的意见领袖,它们充当了精英用户和大众之间的中介层。我们要问的下一个问题是内容在传播过程中的作用。与以前关于信息病毒性的研究相比,我们将重点转移到信息的持久性上,试图理解为什么某些内容在社交媒体上长期传播的原因,而大多数却没有。首先,我们看到人与内容之间的交互作用对信息寿命的影响。结果,对于不同类别的用户广播的信息,寿命存在显着差异。其次,我们发现内容的语言风格与其时态动力学之间有很强的联系:快速消失的信息包含更多与消极情绪,动作和更复杂的认知过程相关的单词,而持久性信息包含与积极情绪相关的更多单词,休闲和生活方式。最后,我们对几个大型社交网络的本地和全球结构进行了纵向研究,询问社交图中社交脱离的方式和位置。我们发现,尽管朋友之间的到达和离开都有显着的相关性,但是离开的动态行为与到达的动态行为有所不同。特别地,对于具有足够数量(例如,大于20个)的朋友的大多数用户,最好通过用户邻域内活动朋友的整体比例来预测离开,而与邻域的大小无关。我们还发现,活跃用户往往比非活跃用户属于致密且密度显着的核心,并且非活跃用户集显示出更高的密度和更低的电导率,其程度远不能单独解释。这两个方面表明,在紧密联系的社区中,位于边缘的节点更可能离开,并且随后的离开在相邻节点之间是相关的。

著录项

  • 作者

    Wu Shaomei;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号