首页> 外文OA文献 >Model based methods for sensor fault-tolerant control of rail vehicle traction
【2h】

Model based methods for sensor fault-tolerant control of rail vehicle traction

机译:基于模型的轨道车辆牵引力传感器容错控制方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis explores the application of modem fault-detection methods to electric rail traction drives. Such drives consist of three main components, induction motors, power inverters and the control system. The power electronics are relatively simple so the scope for fault-tolerance is limited, whilst fault-detection techniques for induction motors are already well developed. There is however scope for work on the instrumentation. The thesis concentrates on the use of model-based techniques to produce a torque and flux estimator for an induction motor which is tolerant to intermittent sensor disconnections. The motors are controlled on torque and flux, these cannot be measured directly and are estimated from measurements of the applied voltages and the resulting currents. The existing estimator has poor steady-state performance at low speed and because of it's transient dynamics it is prone to sensor noise and disconnections.Induction motors have speed-dependent dynamics and the resulting state-space model has terms which are multiplied by speed, this model is strongly bilinear. Speed-dependent feedback is needed to give desirable dynamics to the state estimates. Starting from a state-space model for the induction motor, a closed-loop observer can be designed to estimate the motor states. A range of feedback methods for the observer have been considered, from gain scheduling to sliding mode techniques. These are evaluated in simulation, using a simplified model of the traction system. The simulation neglects many second order effects which would effect the real application. Using data from an induction motor test-rig the observers are shown to be able to track the motor torque during a change in operating condition. Only a limited set of data is available. The influence of parameter mis-match, noise and speed sensor errors are considered byderiving frequency domain expressions for the estimation error in the presence of uncertainty or disturbances. The effect of the observer's gain on its sensitivity to these are considered under conditions which occur in the real application.Using observer feedback to decouple sensors from the estimation a range of sensor fault-detection schemes are developed. In this way a bank of observers is designed which are independent of a different subset of sensors, this enables sensor faults to be isolated. These method are compared in simulation.A motor, inverter and instrumentation are set up, with a DSP to run an observer based sensor fault-detection scheme in real-time. This enables implementation aspects to be explored, such as discretisation, model mis-match and motor loading. These effect the detection by increasing fault-free residual or reducing the fault residual. For a each type of sensor the area of the motor operating range, where a fault is detectable is defined.
机译:本文探讨了现代故障检测方法在电气轨道牵引传动中的应用。这种驱动器由三个主要组件组成:感应电动机,功率逆变器和控制系统。电力电子设备相对简单,因此容错范围受到限制,而感应电动机的故障检测技术已经得到了很好的发展。但是,仪器的工作范围仍然很大。本文集中在基于模型的技术的使用上,以产生用于感应电动机的转矩和通量估计器,该估计器可以间歇地断开传感器。电动机的转矩和磁通受到控制,这些转矩和磁通不能直接测量,只能通过测量施加的电压和产生的电流来估算。现有的估算器在低速时的稳态性能较差,并且由于其瞬态动力学特性,容易产生传感器噪声和断开连接。感应电动机具有与速度有关的动力学特性,并且所得到的状态空间模型的项乘以速度,因此模型是强双线性的。需要与速度有关的反馈,以使状态估计具有理想的动态。从感应电动机的状态空间模型开始,可以设计一个闭环观测器来估算电动机状态。从增益调度到滑模技术,已经考虑了用于观察者的一系列反馈方法。使用牵引系统的简化模型在仿真中对它们进行评估。仿真忽略了许多会影响实际应用的二阶效应。使用感应电动机试验装置的数据,观察者可以在操作条件变化期间跟踪电动机的扭矩。仅提供有限的数据集。在存在不确定性或干扰的情况下,通过推导估计误差的频域表达式,可以考虑参数失配,噪声和速度传感器误差的影响。在实际应用中会考虑观察者增益对其灵敏度的影响。使用观察者反馈将传感器与估计值分离开来,开发了一系列传感器故障检测方案。这样,设计了一组观察者,这些观察者独立于传感器的不同子集,这使得能够隔离传感器故障。在仿真中对这些方法进行了比较。设置了电动机,逆变器和仪器,并使用DSP实时运行基于观测器的传感器故障检测方案。这使得可以探索实现方面,例如离散化,模型失配和电动机负载。这些通过增加无故障残差或减少故障残差来影响检测。对于每种类型的传感器,都定义了可检测到故障的电动机工作范围的区域。

著录项

  • 作者

    Bennett Stephen;

  • 作者单位
  • 年度 1998
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号