首页> 外文期刊>Intelligent Transportation Systems, IEEE Transactions on >Intelligent Traction Control Model for Speed Sensor Vehicles in Computer-Based Transit System
【24h】

Intelligent Traction Control Model for Speed Sensor Vehicles in Computer-Based Transit System

机译:计算机辅助运输系统中速度传感器车辆的智能牵引力控制模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a real-time intelligent traction control model for speed sensor vehicles in computer-based transit systems is proposed. Using the Bayesian decision theory, the model analyzes speed sensor data to learn and classify the train traction conditions (i.e., spin/slip, normal, and slide) that are required for studying vehicle motion patterns. The patterns are applied on the sensor input in real-time format to classify train traction and reduce the error/risk of classification that may cause service interruptions and incidents. The model can enable us to manage a number of state natures (i.e., spin/slip, normal, and slide), features (i.e., delta speed and train speed), and prior knowledge traction conditions. This model engine can be implemented in any programming language in onboard or embedded computers. As a result, the impact of noisy sensors (inaccurate data) and its delays in such a hard real-time control system is mitigated. This conceptual model is applied to a case study with promising results for target and simulation systems.
机译:本文提出了一种基于计算机的交通系统中速度传感器车辆的实时智能牵引力控制模型。该模型使用贝叶斯决策理论分析速度传感器数据,以学习和分类研究车辆运动模式所需的火车牵引条件(即旋转/滑动,法向和滑动)。这些模式以实时格式应用于传感器输入,以对火车牵引力进行分类,并减少可能导致服务中断和事故的分类错误/风险。该模型可以使我们管理许多状态性质(即旋转/滑移,法线和滑动),特征(即增量速度和火车速度)以及先验知识牵引条件。该模型引擎可以在机载或嵌入式计算机中以任何编程语言实现。结果,减轻了噪声传感器(不准确的数据)的影响及其在这种硬实时控制系统中的延迟。该概念模型被应用于案例研究,其目标和仿真系统的结果令人鼓舞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号