首页> 外文OA文献 >Mobius Structures, Einstein Metrics, and Discrete Conformal Variations on Piecewise Flat Two and Three Dimensional Manifolds
【2h】

Mobius Structures, Einstein Metrics, and Discrete Conformal Variations on Piecewise Flat Two and Three Dimensional Manifolds

机译:分段平坦二维和三维流形上的莫比乌斯结构,爱因斯坦度量和离散共形变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spherical, Euclidean, and hyperbolic simplices can be characterized by the dihedral angles on their codimension-two faces. These characterizations analyze the Gram matrix, a matrix with entries given by cosines of dihedral angles. Hyperideal hyperbolic simplices are non-compact generalizations of hyperbolic simplices wherein the vertices lie outside hyperbolic space. We extend recent characterization results to include fully general hyperideal simplices. Our analysis utilizes the Gram matrix, however we use inversive distances instead of dihedral angles to accommodate fully general hyperideal simplices.For two-dimensional triangulations, an angle structure is an assignment of three face angles to each triangle. An angle structure permits a globally consistent scaling provided the faces can be simultaneously scaled so that any two contiguous faces assign the same length to their common edge. We show that a class of symmetric Euclidean angle structures permits globally consistent scalings. We develop a notion of virtual scaling to accommodate spherical and hyperbolic triangles of differing curvatures and show that a class of symmetric spherical and hyperbolic angle structures permit globally consistent virtual scalings.The double tetrahedron is a triangulation of the three-sphere obtained by gluing two congruent tetrahedra along their boundaries. The pentachoron is a triangulation of the three-sphere obtained from the boundary of the 4-simplex. As piecewise flat manifolds, the geometries of the double tetrahedron and pentachoron are determined by edge lengths that gives rise to a notion of a metric. We study notions of Einstein metrics on the double tetrahedron and pentachoron. Our analysis utilizes Regge's Einstein-Hilbert functional, a piecewise flat analogue of the Einstein-Hilbert (or total scalar curvature) functional on Riemannian manifolds.A notion of conformal structure on a two dimensional piecewise flat manifold is given by a set of edge constants wherein edge lengths are calculated from the edge constants and vertex based parameters. A conformal variation is a smooth one parameter family of the vertex parameters. The analysis of conformal variations often involves the study of degenerating triangles, where a face angle approaches zero. We show for a conformal variation that remains weighted Delaunay, if the conformal parameters are bounded then no triangle degenerations can occur.
机译:球面,欧几里得和双曲线的单纯形可以通过其二维的两个面上的二面角来表征。这些特征分析了Gram矩阵,该矩阵的项由二面角的余弦给出。超理想双曲单纯形是双曲单纯形的非紧致概括,其中顶点位于双曲线空间之外。我们扩展了最近的表征结果,以包括完全一般的超理想单纯形。我们的分析使用的是Gram矩阵,但是我们使用反距离而不是二面角来容纳一般的超理想单纯形。对于二维三角剖分,角度结构是每个三角形分配三个面角。角度结构允许全局一致的缩放,前提是可以同时缩放这些面,以便任何两个连续的面为其公共边缘分配相同的长度。我们表明,一类对称的欧几里得角结构允许全局一致的缩放比例。我们提出了虚拟缩放的概念,以适应不同曲率的球面和双曲线三角形,并表明一类对称的球面和双曲角度结构允许全局一致的虚拟缩放。双四面体是通过将两个同等点胶合而获得的三球面的三角剖分沿它们边界的四面体。五面体是从4个单纯形的边界获得的三个球的三角剖分。作为分段的平面流形,双四面体和五面体的几何形状由引起度量概念的边长确定。我们研究关于双四面体和五面体的爱因斯坦度量的概念。我们的分析利用了Regge的Einstein-Hilbert泛函,它是黎曼流形上的Einstein-Hilbert(或总标量曲率)泛函的分段平面类似物。二维分段平面流形上的共形结构的概念由一组边常数给出,其中边缘长度是根据边缘常数和基于顶点的参数计算得出的。共形变化是顶点参数的一个平滑的参数系列。共形变化的分析通常涉及退化三角形的研究,其中面角接近零。我们显示出保形变量保持加权Delaunay,如果保形参数是有界的,则不会发生三角形退化。

著录项

  • 作者

    Champion Daniel James;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号