首页> 外文OA文献 >Techniques and instabilities for 1+1 and 2+1 dimensional integrable partial differential equations.
【2h】

Techniques and instabilities for 1+1 and 2+1 dimensional integrable partial differential equations.

机译:1 + 1和2 + 1维可积偏微分方程的技术和不稳定性。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the semiclassical limit of the 1+1 dimensional initial value problems in the focusing nonlinear Schrodinger (NLS) hierarchy, and establish a rigorous connection of odd flows in this hierarchy to all the members of the Korteweg-de Vries (KdV) hierarchy in the same limit. We also demonstrate numerically that the microscopic oscillations differ in the limit. These initial value problems are closely related to the spectrum of the AKNS operator, which we use to study this limit. To examine this spectrum numerically, we introduce a new method for the calculation of the AKNS Floquet spectrum, and argue that the canonical auxiliary spectrum associated with the NLS flows is intrinsically sensitive to variations of the potential. We then consider the semiclassical limit of the 2+1 dimensional Kadomtsev-Petviashvilli-II (KP-II) equation. We present numerical simulations which suggest the semiclassical limit exists. Like the NLS flows, the KP-II flow has an invariant spectral set, known as the Floquet multiplier curve or Heat curve. To study the KP-II flow, we develop a numerical method for calculating the branches of this curve for small potentials. The numerical integration of these initial value problems employ several new temporal integration techniques. We develop preconditioning methods, spectral multi-grid methods, and asymptotic corrections for these initial value problems. Dissipative techniques which are appropriate for conservative initial value problems are developed, as well as variable timestep methods for conservative partial and ordinary differential equations.
机译:我们研究了聚焦非线性Schrodinger(NLS)层次结构中1 + 1维初值问题的半经典极限,并建立了该层次结构中奇数流与Korteweg-de Vries(KdV)层次结构中所有成员的严格连接。相同的限制。我们还通过数值证明了微观振动在极限上有所不同。这些初始值问题与AKNS运算符的范围密切相关,我们使用AKNS运算符来研究此限制。为了从数值上检查该频谱,我们引入了一种计算AKNS Floquet频谱的新方法,并认为与NLS流相关的规范辅助频谱本质上对电势变化敏感。然后,我们考虑2 + 1维Kadomtsev-Petviashvilli-II(KP-II)方程的半经典极限。我们提出数值模拟,表明存在半经典极限。像NLS流一样,KP-II流具有不变的频谱集,称为Floquet乘数曲线或Heat曲线。为了研究KP-II流,我们开发了一种数值方法,用于计算小电位时该曲线的分支。这些初始值问题的数值积分采用了几种新的时间积分技术。我们针对这些初始值问题开发了预处理方法,频谱多网格方法和渐近校正。开发了适用于保守初值问题的耗散技术,以及针对保守偏微分方程和常微分方程的可变时步法。

著录项

  • 作者

    MacEvoy Warren Douglas.;

  • 作者单位
  • 年度 1994
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号