首页> 外文OA文献 >電力市場参加者モデルに関する研究:ファジイ推論システムを用いるエージェントモデルとリスク管理を考慮したエージェントモデルの提案
【2h】

電力市場参加者モデルに関する研究:ファジイ推論システムを用いるエージェントモデルとリスク管理を考慮したエージェントモデルの提案

机译:电力市场参与者模型研究:使用模糊推理系统的Agent模型和考虑风险管理的Agent模型的建议

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the restructuring in electricity industries around the world, electricity markets have emerged in many countries. Under the market mechanism,generation companies (generators) and consumers are exposed to markets to meet their own needs, i.e. generators sell power to earn a pro t and consumers buy power for consumption. A market operator mediates by requiring participants to submit bids they desire to sell or buy for 24 hours of next day and then determining market price and dispatch schedules.Electricity markets are expected to promote competition and ultimately benefit consumers. However,the characteristics of electricity such as nonstorability, little demand side elasticity in short term, etc., make it difficult to apply traditional economic theory to analyze and predict market behavior.The strategic bidding behavior is often observed to severely influence market prices.Agent-based simulation is widely applied in social science and economics.Especially in electricity markets analysis, a participant is modeled as a rational and adaptive agent who learns to select bids that maximize its profit under various market conditions, thereby how local interaction among market participantsu27 bidding behavior influence global level market price can be investigated. Agent-based simulation also has the potential to treat heterogeneous costs, capacity limits, price caps and other practical issues directly.The thesis is motivated by the observation that participants in electricity markets are faced with various uncertainties such as fluctuating prices,varying demand, competitorsu27 strategic bidding behaviors etc. The information based on which participants make decisions is therefore imprecise and uncertain. Therefore the decision-making under uncertainty plays an important role in an agent model. However, so far, agent-based electricity market research has not dealt with such uncertainness explicitly. Moreover, verification of agent-based models, which is an important issue for agent-based modeling, is also not sufficiently explored.Fuzzy logic is proven to be a practical method to handle decision making problems under uncertainty. We propose to use a fuzzy inference system(FIS) to model a generatoru27s decision-making in bidding. To construct a fuzzy inference system, fuzzy sets and fuzzy rules need to be designed. Since the submitted bidu27s performance can be evaluated by the profit it brought about, such evaluative signals, rather than instructive training data, can be employed by reinforcement learning methods to construct an FIS. Symbiotic evolution is able to learn and tune FIS based on reinforcement signals and it is proved to be effective in a single agent situation. SE is adopted in our multi-agent environment to tune each agentu27s FIS.Experiments show that our model agrees with Cournot game and Bertrand game solutions in game theory methods if generatorsu27 strategies are restricted to quantity competition or price competition. The experiment results demonstrate the agreement of agent-based simulation with game theory analysis.Risk management is a critical issue for market participants. Therefore bidding strategies with risk management is strongly required by market participants. So far, bidding strategies with risk consideration are developed under the assumption of price-taker. However, a participant is not always a price-taker. Agent-based modeling can work well for situations without price-taker assumption. However, few effort is worked on agent models with explicit risk management, which are capable to help investigate how individualsu27 risk management influences market price.In the second part of our work, an agent model with explicit risk management for generators is proposed.Two risk metrics are considered: standard deviation, VaR (value at risk). An agent evaluates its action using weighted sum of expected return and risk for the action. Since the probability distribution for the reward received after the execution of an action is unknown, the estimates for VaR are based on historical data which should be memorized for evaluation. We apply the model to the analysis of market dynamics in electricity pool market. By experiments we show that generators with risk management bid differently compared to the case when they bid based on expected return. When genera-tors use standard deviation to measure risk, the variance in pro t is reduced at the cost of reduction of pro t. VaR metric can bring higher profit for generators compared to standard deviation measure.The model is applied to market simulation with discriminatory pricing and uniform pricing rules. Our experiment demonstrated that uniform pricing leads to higher variance in market price than discriminatory pricing when demand is high and uncertain.
机译:随着全球电力行业的重组,许多国家都出现了电力市场。在市场机制下,发电公司(发电机)和消费者要接触市场以满足自己的需求,即发电机出售电力以赚取利润,消费者购买电力以进行消费。市场运营商通过要求参与者在第二天的24小时内提交想要出售或购买的投标书,然后确定市场价格和调度时间表来进行调解。电力市场有望促进竞争并最终使消费者受益。但是,电力的特性如不可存储性,短期内需求侧弹性极小等,使得难以应用传统的经济学理论来分析和预测市场行为。经常观察到战略性招标行为严重影响了市场价格。基于模型的模拟被广泛应用于社会科学和经济学。特别是在电力市场分析中,参与者被建模为理性的和适应性的主体,他们学会选择在各种市场条件下能最大化其利润的投标,从而了解市场参与者之间的本地互动 u27竞标行为对全球市场价格的影响可以进行调查。基于智能体的仿真还具有直接处理异构成本,容量限制,价格上限和其他实际问题的潜力。本文的发现是基于电力市场参与者面临各种不确定性,例如价格波动,需求变化,竞争对手等。 u27战略性投标行为等。因此,参与者所依据的决策信息是不准确且不确定的。因此,不确定性下的决策在主体模型中起着重要的作用。但是,到目前为止,基于代理的电力市场研究尚未明确处理这种不确定性。而且,基于代理的模型的验证是基于代理的建模的重要问题,但也没有得到足够的研究。模糊逻辑被证明是处理不确定性决策问题的一种实用方法。我们建议使用模糊推理系统(FIS)对投标者中发电商的决策进行建模。要构建模糊推理系统,需要设计模糊集和模糊规则。由于可以通过投标所带来的利润来评估所提交的投标的绩效,因此可以通过强化学习方法来采用这种评估信号而不是指导性的培训数据来构建FIS。共生进化能够基于增强信号学习和调整FIS,并被证明在单药情况下是有效的。在多主体环境中采用SE来调整每个主体的FIS。实验表明,如果生成者的策略限于数量竞争或价格竞争,则我们的模型在博弈论方法中与Cournot博弈和Bertrand博弈解决方案一致。实验结果证明了基于代理的仿真与博弈论分析的一致性。风险管理是市场参与者的关键问题。因此,市场参与者强烈要求采用风险管理的投标策略。到目前为止,在考虑价格接受者的前提下,开发了具有风险考虑的投标策略。但是,参与者并不总是讲价的。基于代理的建模可以很好地适用于无需承担价格的情况。但是,在具有明确风险管理的主体模型上所做的工作很少,它可以帮助调查个人风险管理如何影响市场价格。在第二部分,我们提出了针对发电者具有明确风险管理的主体模型。考虑了两个风险指标:标准偏差,VaR(风险值)。代理商使用预期收益和该风险的加权总和来评估其行为。由于执行动作后获得的报酬的概率分布是未知的,因此,VaR的估计值基于历史数据,应将其存储以进行评估。我们将该模型应用于电池市场的市场动态分析。通过实验,我们发现具有风险管理功能的生成器与基于预期收益进行出价的情况相比,具有不同的出价。当生成者使用标准差来衡量风险时,prot的方差会以prot的减少为代价而减少。与标准差度量相比,VaR度量可以为发电机带来更高的利润。该模型用于具有歧视性定价和统一定价规则的市场模拟。我们的实验表明,在需求较高且不确定的情况下,统一定价比歧视性定价导致的市场价格差异更大。

著录项

  • 作者

    Zhi Guilan;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号