首页> 外文OA文献 >Fully bayesian blind source separation of astrophysical images modelled by mixture of Gaussians
【2h】

Fully bayesian blind source separation of astrophysical images modelled by mixture of Gaussians

机译:用高斯混合模型模拟天体图像的完全贝叶斯盲源分离

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work, we address the problem of source separation in the presence of prior information. We develop a fully Bayesian source separation technique which assumes a generic model for the sources, namely Gaussian mixtures with a priori unknown number of components and utilise Markov chain Monte Carlo techniques for model parameter estimation. The development of this methodology is motivated by the need to bring an efficient solution to the separation of components in the microwave radiation maps to be obtained by the satellite mission PLANCK which has the objective of uncovering cosmic microwave background radiation. The proposed algorithm successfully incorporates a rich variety of prior information available to us in this problem in contrast to most of the previous work which assume completely blind separation of the sources. We report results on realistic simulations of expected Planck maps and on WMAP 3rd year results. The technique suggested is easily applicable to other source separation applications by modifying some of the priors.
机译:在这项工作中,我们解决了先验信息存在下的源分离问题。我们开发了一种完全贝叶斯源分离技术,该方法假定了源的通用模型,即具有先验未知数量组分的高斯混合物,并利用马尔可夫链蒙特卡罗技术进行模型参数估计。这种方法学的发展是出于需要为微波辐射图中的成分分离提供有效解决方案的需要,该任务由卫星任务PLANCK获得,其目的是发现宇宙微波背景辐射。与大多数以前的工作假设完全盲目分离源头相比,该算法成功地结合了我们在该问题中可获得的丰富的先验信息。我们报告预期的普朗克地图和WMAP第三年结果的真实模拟结果。通过修改某些先验技术,建议的技术很容易应用于其他源分离应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号