首页> 外文期刊>Circuits, systems, and signal processing >Gaussian Mixture Model-Based Bayesian Analysis for Underdetermined Blind Source Separation
【24h】

Gaussian Mixture Model-Based Bayesian Analysis for Underdetermined Blind Source Separation

机译:确定性盲源分离的基于高斯混合模型的贝叶斯分析

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a Gaussian mixture model-based Bayesian analysis for blind source separation of an underdetermined model that has more sources than sensors. The proposed algorithm follows a hierarchical learning procedure and alternative estimations for sources and the mixing matrix. The independent sources are estimated from their posterior means, and the mixing matrix is estimated by the maximum likelihood method. Because each source is conditionally correlated with others in its Markov blanket, the correlations between them are approximated by using linear response theory; this is based on the factorized approximation to the sources' true posteriors. In this framework, each source is modeled as a mixture of Gaussians to fit its actual distribution. Given enough Gaussians, the mixture model can learn any distribution. The algorithm provides a good identification of the mixing system, and its flexibility speeds up the convergence. The iterative learning for Gaussians leads to a parametric density estimation for all hidden sources as well as their recovery in the end. The major advantages of this algorithm are its flexibility and its fast convergence. Simulations using synthetic data validate the effectiveness of the algorithm.
机译:本文提出了一种基于高斯混合模型的贝叶斯分析方法,用于对不确定源比传感器源更多的不确定模型进行盲源分离。所提出的算法遵循分层学习过程以及对源和混合矩阵的替代估计。独立源通过其后均值进行估计,而混合矩阵通过最大似然法进行估计。由于每个源都在其马尔可夫覆盖层中有条件地相互关联,因此它们之间的相关性可以通过使用线性响应理论来近似;这是基于对源真实后代的因式近似。在此框架中,每个源均建模为高斯混合模型,以适应其实际分布。只要有足够的高斯分布,混合模型就可以学习任何分布。该算法可很好地识别混合系统,其灵活性可加快收敛速度​​。高斯人的迭代学习导致对所有隐藏源及其最终恢复的参数密度估计。该算法的主要优点是它的灵活性和快速收敛性。使用合成数据进行的仿真验证了该算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号