首页> 外文OA文献 >NOVEL ALGORITHMS AND TOOLS FOR LIGAND-BASED DRUG DESIGN
【2h】

NOVEL ALGORITHMS AND TOOLS FOR LIGAND-BASED DRUG DESIGN

机译:基于配体的药物设计的新型算法和工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computer-aided drug design (CADD) has become an indispensible component in modern drug discovery projects. The prediction of physicochemical properties and pharmacological properties of candidate compounds effectively increases the probability for drug candidates to pass latter phases of clinic trials. Ligand-based virtual screening exhibits advantages over structure-based drug design, in terms of its wide applicability and high computational efficiency. The established chemical repositories and reported bioassays form a gigantic knowledgebase to derive quantitative structure-activity relationship (QSAR) and structure-property relationship (QSPR). In addition, the rapid advance of machine learning techniques suggests new solutions for data-mining huge compound databases. In this thesis, a novel ligand classification algorithm, Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps (LiCABEDS), was reported for the prediction of diverse categorical pharmacological properties. LiCABEDS was successfully applied to model 5-HT1A ligand functionality, ligand selectivity of cannabinoid receptor subtypes, and blood-brain-barrier (BBB) passage. LiCABEDS was implemented and integrated with graphical user interface, data import/export, automated model training/ prediction, and project management. Besides, a non-linear ligand classifier was proposed, using a novel Topomer kernel function in support vector machine. With the emphasis on green high-performance computing, graphics processing units are alternative platforms for computationally expensive tasks. A novel GPU algorithm was designed and implemented in order to accelerate the calculation of chemical similarities with dense-format molecular fingerprints. Finally, a compound acquisition algorithm was reported to construct structurally diverse screening library in order to enhance hit rates in high-throughput screening.
机译:计算机辅助药物设计(CADD)已成为现代药物发现项目中必不可少的组成部分。对候选化合物的理化性质和药理性质的预测有效地增加了候选药物通过临床试验后期的可能性。基于配体的虚拟筛选具有广泛的适用性和较高的计算效率,与基于结构的药物设计相比具有优势。建立的化学储存库和已报道的生物测定方法形成了巨大的知识库,可得出定量的构效关系(QSAR)和构效关系(QSPR)。另外,机器学习技术的飞速发展为大型复合数据库的数据挖掘提供了新的解决方案。本文提出了一种新型的配体分类算法,即自适应增强集合决策树的配体分类器(LiCABEDS),用于预测各种分类药理特性。 LiCABEDS已成功应用于模型5-HT1A配体功能,大麻素受体亚型的配体选择性和血脑屏障(BBB)通过。 LiCABEDS已实现并与图形用户界面,数据导入/导出,自动模型训练/预测以及项目管理集成在一起。此外,提出了一种非线性配体分类器,它在支持向量机中使用了一种新型的Topomer核函数。由于着重于绿色高性能计算,图形处理单元是计算量大的任务的替代平台。设计并实施了一种新颖的GPU算法,以加快密集格式分子指纹的化学相似性计算。最后,据报道,一种化合物获取算法可构建结构多样的筛选库,以提高高通量筛选的命中率。

著录项

  • 作者

    MA CHAO;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号