首页> 外文OA文献 >Meshless Local Petrov-Galerkin Euler-Bernoulli Beam Problems: A Radial Basis Function Approach
【2h】

Meshless Local Petrov-Galerkin Euler-Bernoulli Beam Problems: A Radial Basis Function Approach

机译:无网格局部Petrov-Galerkin欧拉-伯努利梁问题:径向基函数方法

摘要

A radial basis function implementation of the meshless local Petrov-Galerkin (MLPG) method is presented to study Euler-Bernoulli beam problems. Radial basis functions, rather than generalized moving least squares (GMLS) interpolations, are used to develop the trial functions. This choice yields a computationally simpler method as fewer matrix inversions and multiplications are required than when GMLS interpolations are used. Test functions are chosen as simple weight functions as in the conventional MLPG method. Compactly and noncompactly supported radial basis functions are considered. The non-compactly supported cubic radial basis function is found to perform very well. Results obtained from the radial basis MLPG method are comparable to those obtained using the conventional MLPG method for mixed boundary value problems and problems with discontinuous loading conditions.
机译:提出了无网格局部Petrov-Galerkin(MLPG)方法的径向基函数实现,以研究Euler-Bernoulli梁问题。使用径向基函数而不是广义移动最小二乘(GMLS)插值来开发试验函数。与使用GMLS插值方法相比,此方法产生的计算方法更简单,因为所需的矩阵求逆和乘法次数更少。选择测试函数作为常规MLPG方法中的简单权重函数。考虑了紧凑和非紧凑支撑的径向基函数。发现非紧凑支撑的三次径向基函数执行得很好。对于混合边界值问题和不连续载荷条件的问题,径向基MLPG方法获得的结果与常规MLPG方法获得的结果可比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号