首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Radial Basis Function Neural Network with Localized Stochastic-Sensitive Autoencoder for Home-Based Activity Recognition
【2h】

Radial Basis Function Neural Network with Localized Stochastic-Sensitive Autoencoder for Home-Based Activity Recognition

机译:具有局部随机敏感自动编码器的径向基函数神经网络用于家庭活动识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Over the past few years, the Internet of Things (IoT) has been greatly developed with one instance being smart home devices gradually entering into people’s lives. To maximize the impact of such deployments, home-based activity recognition is required to initially recognize behaviors within smart home environments and to use this information to provide better health and social care services. Activity recognition has the ability to recognize people’s activities from the information about their interaction with the environment collected by sensors embedded within the home. In this paper, binary data collected by anonymous binary sensors such as pressure sensors, contact sensors, passive infrared sensors etc. are used to recognize activities. A radial basis function neural network (RBFNN) with localized stochastic-sensitive autoencoder (LiSSA) method is proposed for the purposes of home-based activity recognition. An autoencoder (AE) is introduced to extract useful features from the binary sensor data by converting binary inputs into continuous inputs to extract increased levels of hidden information. The generalization capability of the proposed method is enhanced by minimizing both the training error and the stochastic sensitivity measure in an attempt to improve the ability of the classifier to tolerate uncertainties in the sensor data. Four binary home-based activity recognition datasets including OrdonezA, OrdonezB, Ulster, and activities of daily living data from van Kasteren (vanKasterenADL) are used to evaluate the effectiveness of the proposed method. Compared with well-known benchmarking approaches including support vector machine (SVM), multilayer perceptron neural network (MLPNN), random forest and an RBFNN-based method, the proposed method yielded the best performance with 98.35%, 86.26%, 96.31%, 92.31% accuracy on four datasets, respectively.
机译:在过去的几年中,物联网(IoT)得到了极大的发展,其中一个例子就是智能家居设备逐渐进入人们的生活。为了最大程度地发挥这种部署的作用,需要基于家庭的活动识别,以最初识别智能家居环境中的行为,并使用此信息来提供更好的健康和社会护理服务。活动识别功能可以根据嵌入房屋内的传感器收集的有关人们与环境互动的信息来识别人们的活动。在本文中,由匿名二进制传感器(例如压力传感器,接触传感器,无源红外传感器等)收集的二进制数据用于识别活动。提出了一种基于局部随机敏感自动编码器(LiSSA)方法的径向基函数神经网络(RBFNN),用于基于家庭的活动识别。引入了自动编码器(AE),可通过将二进制输入转换为连续输入以提取增加级别的隐藏信息来从二进制传感器数据中提取有用的功能。通过最小化训练误差和随机灵敏度度量来增强所提出方法的泛化能力,以尝试提高分类器对传感器数据的不确定性的承受能力。使用四个二进制的基于家庭的活动识别数据集,包括OrdonezA,OrdonezB,Ulster以及来自van Kasteren(vanKasterenADL)的日常生活数据来评估该方法的有效性。与支持向量机(SVM),多层感知器神经网络(MLPNN),随机森林和基于RBFNN的著名基准测试方法相比,该方法以98.35%,86.26%,96.31%,92.31的效果最佳。在四个数据集上的准确度分别为%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号