首页> 外文OA文献 >Surrogate-assisted Cooperative Swarm Optimization of High-dimensional Expensive Problems
【2h】

Surrogate-assisted Cooperative Swarm Optimization of High-dimensional Expensive Problems

机译:高维昂贵问题的替代辅助协同群优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Surrogate models have shown to be effective in assisting metaheuristic algorithms for solving computationally expensive complex optimization problems. The effectiveness of existing surrogate-assisted metaheuristic algorithms, however, has only been verified on low-dimensional optimization problems. In this paper, a surrogate-assisted cooperative swarm optimization algorithm is proposed, in which a surrogate-assisted particle swarm optimization algorithm and a surrogate-assisted social learning based particle swarm optimization algorithm cooperatively search for the global optimum. The cooperation between the particle swarm optimization and the social learning based particle swarm optimization consists of two aspects. First, they share promising solutions evaluated by the real fitness function. Second, the social learning based particle swarm optimization focuses on exploration while the particle swarm optimization concentrates on local search. Empirical studies on six 50-dimensional and six 100-dimensional benchmark problems demonstrate that the proposed algorithm is able to find high-quality solutions for high-dimensional problems on a limited computational budget.
机译:代理模型已经显示出有效的辅助元启发式算法来解决计算量大的复杂优化问题的能力。但是,现有的代理辅助元启发式算法的有效性仅在低维优化问题上得到了验证。提出了一种替代辅助协同群算法,其中,一种替代辅助粒子群优化算法与一种基于替代社会学习的粒子群优化算法协同寻找全局最优。粒子群优化与基于社会学习的粒子群优化之间的合作包括两个方面。首先,他们共享通过真实适应度函数评估的有前途的解决方案。其次,基于社会学习的粒子群优化方法主要是探索,而粒子群优化方法则集中在局部搜索上。对六个50维和六个100维基准问题的经验研究表明,所提出的算法能够在有限的计算预算下找到针对高维问题的高质量解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号