首页> 外文期刊>Knowledge-Based Systems >An efficient surrogate-assisted particle swarm optimization algorithm for high-dimensional expensive problems
【24h】

An efficient surrogate-assisted particle swarm optimization algorithm for high-dimensional expensive problems

机译:高维昂贵问题的一种有效的代理辅助粒子群算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an efficient surrogate-assisted particle swarm optimization algorithm is proposed to further improve the efficiency for optimization of high-dimensional expensive problems, which sometimes involve costly simulation analysis. Unlike several surrogate-assisted metaheuristic algorithms, the proposed algorithm can effectively balance the prediction ability of surrogates and the global search ability of particle swarm optimization in the optimization process. Specifically, the proposed algorithm efficiently uses the optima obtained from the global surrogate built in the entire design space and the local surrogate built in a neighbor region around the personal historical best particle to update the velocities of the particles. It should be stressed that the neighbor region partition strategy used to obtain the optimums of local surrogates is an essential aspect of the proposed algorithm. This strategy helps to obtain the predicted optima of local surrogates in the neighbor regions to guide the search of particle swarm optimization in the optimization process. In addition, the neighbor region partition strategy considers the diversity of personal historical best particles, which enables the proposed algorithm to efficiently search for different types of problems. Moreover, the optimization efficiency of the proposed algorithm can be enhanced by using the surrogate prescreening strategy. In order to validate the proposed algorithm, it is tested on several high-dimensional numerical benchmark problems and comprehensively compared with several optimization algorithms. The results show that the proposed algorithm is very promising for the optimization of high-dimensional expensive problems. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文提出了一种有效的替代辅助粒子群算法,以进一步提高高维代价问题的优化效率,有时需要进行昂贵的仿真分析。与几种代理辅助元启发式算法不同,该算法可以在优化过程中有效地平衡代理的预测能力和粒子群优化的全局搜索能力。具体而言,所提出的算法有效地利用了从在整个设计空间中构建的全局代理和在个人历史最佳粒子周围的相邻区域中构建的局部代理获得的最优值来更新粒子的速度。应该强调的是,用于获得局部替代指标最优值的邻域划分策略是所提出算法的一个基本方面。该策略有助于获得邻域中局部替代物的预测最优值,以指导优化过程中粒子群优化的搜索。另外,相邻区域划分策略考虑了个人历史最佳粒子的多样性,这使得所提出的算法能够有效地搜索不同类型的问题。此外,通过使用代理预筛选策略可以提高算法的优化效率。为了验证该算法的有效性,对几种高维数值基准问题进行了测试,并与几种优化算法进行了全面比较。结果表明,该算法对高维昂贵问题的优化具有广阔的前景。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号