首页> 美国卫生研究院文献>other >Markerless Human Motion Tracking Using Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization
【2h】

Markerless Human Motion Tracking Using Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization

机译:分层多群合作粒子群算法的无标记人体运动跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches—Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.
机译:从多视角视频序列中进行无标记的全身关节式人体运动跟踪所涉及的高维搜索空间,导致了许多基于元启发法的解决方案,其中最新形式是粒子群优化(PSO)。但是,传统的PSO会过早收敛,很容易陷入局部最优状态,从而严重影响跟踪精度。为了克服这些缺点,我们开发了一种基于层次多群合作粒子群优化算法(H-MCPSO)的问题解决方法。跟踪问题被公式化为非线性34维函数优化问题,其中适应度函数可量化观察到的图像与模型配置的投影之间的差异。轮廓和边缘似然都在适应度函数中使用。使用Brown和HumanEva-II数据集进行的实验表明,H-MCPSO的性能要优于两种领先的替代方法-粒子过滤器(APF)和分层粒子群优化(HPSO)。此外,所提出的跟踪方法能够自动初始化并从临时跟踪失败中自动恢复。提出了全面的实验结果以支持权利要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号