首页> 外文期刊>Expert Systems with Application >Handling multi-objective optimization problems with a multi-swarm cooperative particle swarm optimizer
【24h】

Handling multi-objective optimization problems with a multi-swarm cooperative particle swarm optimizer

机译:使用多群协同粒子群优化器处理多目标优化问题

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new multi-objective optimization algorithm in which multi-swarm cooperative strategy is incorporated into particle swarm optimization algorithm, called multi-swarm cooperative multi-objective particle swarm optimizer (MC-MOPSO). This algorithm consists of multiple slave swarms and one master swarm. Each slave swarm is designed to optimize one objective function of the multi-objective problem in order to find out all the non-dominated optima of this objective function. In order to produce a well distributed Pareto front, the master swarm is developed to cover gaps among non-dominated optima by using a local MOPSO algorithm. Moreover, in order to strengthen the capability locating multiple optima of the PSO, several improved techniques such as the Pareto dominance-based species technique and the escape strategy of mature species are introduced. The simulation results indicate that our algorithm is highly competitive to solving the multi-objective optimization problems.
机译:本文提出了一种新的多目标优化算法,其中将多群合作策略纳入了粒子群优化算法,称为多群合作多目标粒子群优化器(MC-MOPSO)。该算法由多个从群和一个主群组成。每个从群设计为优化多目标问题的一个目标函数,以便找出该目标函数的所有非支配最优。为了产生分布良好的帕累托锋,通过使用局部MOPSO算法,开发了主群以覆盖非主导最优之间的差距。此外,为了增强定位PSO的多个最优解的能力,引入了几种改进的技术,例如基于Pareto优势的物种技术和成熟物种的逃避策略。仿真结果表明,我们的算法在解决多目标优化问题上具有很高的竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号