A computer vision is a special kind of scientific challenge as we are alludusers of our own vision systems.udOur vision is definitely a source of the major part of information weudacquire and process each second.udA stereo vision is perhaps even greater challenge, since our own visionudsystem is a stereo one andudit performs a complex task, which supplies us with 3D information on ourudsurroundings in a very effectiveudway.ududMaking machines see is a difficult problem. On one side we haveudpsychologicaludaspects of human visual perception, which try to explain how the visualudinformation is processedudin the human brain. On the other side we have technical solutions, which tryudto imitateudhuman vision. Normally, it all starts with capturinguddigital images that store the basic informationudabout the scene in a similar way that humans see. But this informationudrepresents only theudbeginning of a difficult process. By itself it does not reveal theudinformation about the objects on the scene,udtheir color, distances etc.udto the machine. For humans, visual recognition is an easy task, but theudhuman brain processing methods areudstill a mistery to us.ududOne part of the human visual perception is estimating the distances to theudobjects on the scene.udThis informationudis also needed by robots if we want them to be completely autonomous.ududIn this dissertation we present a stereo panoramic depth imaging system.ududThe basicudsystem is mosaic-based, which means that we use a single standard rotatingudcamera and assemble the captured images in a multiperspective panoramicudimage.udDue to a setoff of theudcamera's optical center from the rotational center of the system we areudable to capture the motion parallax effect, which enables the stereoudreconstruction. The camera is rotating on a circular path with the stepuddefined by an angle equivalent to one-pixel column of the captured image.udTo find the corresponding points on a stereo pair ofudpanoramic images the epipolar geometry needs to be determined.udIt can be shown that the epipolar geometry is very simple if we are doingudthe reconstruction based on a symmetric pair of stereo panoramic images.udWe get a symmetric pair of stereo panoramic images when we takeudsymmetric columns on the left and on the right side from the capturedudimage center column.ududThis system howeverudcannot generate panoramicudstereo pair in real time. That is whyudwe have suggested a real time extension of the system,udbased onudsimultaneously using manyudstandard cameras.udWe have not physically built the real time sensor, but we have performedudsimulations to establish the quality of results.ududBoth systems have beenudexhaustively analysed and compared. The analyses revealed a number ofudinterestingudproperties of the systems.udAccording to the basic system accuracy we definitely can use the system forudautonomous robot localisation and navigation tasks.udThe assumptionsudmade in the real time extension of the basic systemudhave been proved to be correct,udbut the accuracy of the new sensor generally deteriorates in comparison toudthe basic sensor.ududGenerally speaking, theuddissertation canudserve as a guide for panoramic depth imagingudsensor design and related issues.udud
展开▼
机译:计算机视觉是一种特殊的科学挑战,因为我们都是视觉系统的使用者。 ud我们的视觉绝对是我们每秒获取和处理的信息的主要部分的来源。 ud立体视觉甚至可以更大的挑战是,因为我们自己的视觉系统/ udud系统是立体声系统,并且 udit执行一项复杂的任务,从而以非常有效的 udway方式向我们提供关于 udurroundings的3D信息。一方面,我们具有人类视觉感知的 udpsychological udspect,试图解释人类大脑中视觉 udinformation是如何被处理的。另一方面,我们有技术解决方案,试图 ud模仿 udhuman视觉。通常,所有操作都以捕获 uddigital图像开始,该图像以类似于人类的方式存储有关场景的基本信息 ud。但是,此信息仅表示困难过程的开始。它本身并不能显示有关场景中物体的信息,其颜色,距离等信息。对于人类来说,视觉识别是一项容易的任务,但是 ud人脑的处理方法仍然对我们来说是个迷雾。 ud ud人类视觉感知的一部分是估算到场景中 ud对象的距离。 ud此信息 uds,如果我们希望它们完全自治,也需要机器人。 ud ud在本文中,我们提出了一种立体全景深度成像系统。 ud ud基本的 udsystem是基于镶嵌的,这意味着我们使用单个标准旋转 udcamera并将捕获的图像组合成多角度全景 udimage。 ud由于 udcamera的光学中心与系统的旋转中心之间存在偏移,因此我们 ud能够捕获运动视差效果,从而实现立体 udreconstruction 。相机在圆形路径上旋转,其步长 ud所定义的角度等于所捕获图像的一个像素列。 ud要在立体 up全景图像上找到对应的点,需要确定对极的几何形状。 ud表明,如果我们基于对称的一对立体全景图像进行重建,则极线几何非常简单。 ud当我们在左侧和右侧拍摄 udsymmetric列时,可以获得一对对称的立体全景图像。 ud ud此系统 ud无法实时生成全景 udstereo对。这就是为什么 ud我们建议使用 ud同时使用许多 udstandard摄像机同时建议对系统进行实时扩展。 ud我们并没有物理上构建实时传感器,但是我们已经执行了 udsim模拟来确定结果的质量。 ud ud已对两个系统进行了详尽的分析和比较。分析揭示了系统的一些 ud有趣 ud属性。 ud根据基本系统的准确性,我们可以肯定地将系统用于 ud自主的机器人定位和导航任务。 ud基本系统的实时扩展中的假设 ud 已被证明是正确的,但是与基本传感器相比,新传感器的精度通常会下降。 ud ud一般而言,论文可以作为全景深度成像 ud传感器设计及相关指南问题。 ud ud
展开▼