首页> 外文OA文献 >第一原理を用いた太陽電池及び燃料電池に応用する無機ダブルペロブスカイトに関する研究
【2h】

第一原理を用いた太陽電池及び燃料電池に応用する無機ダブルペロブスカイトに関する研究

机译:用第一原理研究无机双钙钛矿应用于太阳能电池和燃料电池

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, perovskite materials have attracted much attention in the application of renewable energy. For instance, the hybrid of inorganic?organic lead halide perovskite has been regarded as the most promising light?harvesting material for next generation solar cells. On the other hand, the transition metal (TM) oxide perovskites have also been studied extensively as electrodes of fuel cells and lithium?air batteries. Several issues are needed to solve, such as the lead pollution of PSCs and the high working temperature of SOFCs to realize the commercialization of perovskite solar cells (PSCs) and solid oxide fuel cells (SOFCs). Therefore, this thesis focuses on the theoretical studies of a series of inorganic double perovskites as the PSCs absorbers and the SOFCs electrodes. In chapter 1, the structural and electronic properties of perovskite materials are briefly introduced. The working principles of PSCs and SOFCs are described. The previous theoretical studies are also reviewed. In the end of this chapter, the motivation of this thesis is presented. In chapter 2, the theoretical backgrounds and simulation approach are briefly summarized, including the density functional theory (DFT), on?site coulomb potential correction method, optical calculation method, and climbing?image nudged elastic band method. In chapter 3, the electronic and optical properties of the double halide perovskites Cs2NaBX6 (B = Sb, Bi; X = Cl, Br, I) are studied to evaluate the potential application of solar energy conversion. The calculated results revealed that the inorganic double iodide perovskites, Cs2NaSbI6 and Cs2NaBiI6, have suitable bandgaps of 1.65 eV and 1.68 eV, suggesting the potential application as the visible?light absorber of perovskite solar cells. In chapter 4, the electronic and optical properties of Mo?based double oxide perovskites Sr2BMoO6 (B = Mg, Ca, and Zn) are studied by first?principles calculations. The electronic band structures demonstrate that these double perovskites are semiconductor. The alkaline metals (Mg and Ca) doped double perovskites have direct bandgaps, while the Zn?doped double perovskite exhibits the indirect bandgap. B?site substation significantly influence the electronic and optical properties of perovskites, which can be a useful approach to design novel absorbers of perovskite solar cells. 3 In chapter 5, the Mo?based double oxide perovskites Sr2BMoO6 (B = Mg, Cr, Co and Ni) are studied with the primary focus on the mixed ionic and electronic conductivity. The effects of substituted elements on the vacancy formation and migration are analyzed from the calculated ground states energy. Co?substituted double perovskite is predicted to possess the best oxygen ionic conductivity among these Mo?based double perovskites. According to the calculated charge density, the substituted cations (e.g., Mg2+, Cr3+, Co2+, and Ni2+) accommodate the additional electrons released from oxygen vacancy, which plays an important role in the oxygen ionic conductivity in these double oxide perovskites. In chapter 6, the theoretical investigation of transition metal oxide perovskites Sr2TixFe2? xO6?δ (x = 0.5, 1, 1.5) are investigated by first?principles calculations. The calculated formation energy of oxygen vacancy demonstrates the high concentration of oxygen vacancy. The electrons released from the oxygen vacancy tend to reorganize onto the 3d orbital of Fe cations through the weak covalent Fe?O and Ti?O bonds. Given the electronic configuration of Fe cations, this itineracy of leftover electrons facilitates to the oxygen ions conductivity in these perovskites. These results reveal the influence of Fe?O and Ti?O bonds on the oxygen vacancy formation and migration in these perovskites, which provide theoretical information for exploring new electrode materials of solid oxide fuel cells. In the final chapter 7, the general conclusions and future prospect are described. The electronic properties and oxygen ionic conductivity of transition metal oxide double perovskites were studied by the first?principles calculation method. For the future study, the activity energy of oxygen evaluation and reduction reactions should be simulated at the surface of electrode materials. Combined with the ions diffusion properties in the bulk of electrodes, the simulation method will provide a comprehensive theoretical guide for the development of perovskite materials.
机译:近年来,钙钛矿材料在可再生能源的应用中引起了很多关注。例如,无机-有机卤化铅钙钛矿的混合物被认为是下一代太阳能电池最有希望的光收集材料。另一方面,过渡金属(TM)氧化物钙钛矿也已被广泛研究作为燃料电池和锂空气电池的电极。需要解决一些问题,例如PSC的铅污染和SOFC的高工作温度,以实现钙钛矿太阳能电池(PSC)和固体氧化物燃料电池(SOFC)的商业化。因此,本文重点研究了一系列无机双钙钛矿作为PSCs吸收剂和SOFCs电极的理论研究。在第一章中,简要介绍了钙钛矿材料的结构和电子性能。描述了PSC和SOFC的工作原理。还回顾了以前的理论研究。在本章的最后,提出了本文的动机。在第二章中,简要概述了理论背景和仿真方法,包括密度泛函理论(DFT),现场库仑电势校正方法,光学计算方法以及爬升图像微移弹性带方法。在第三章中,研究了双卤化物钙钛矿Cs2NaBX6(B = Sb,Bi; X = Cl,Br,I)的电子和光学性质,以评估太阳能转换的潜在应用。计算结果表明,无机双碘化物钙钛矿Cs2NaSbI6和Cs2NaBiI6具有合适的带隙为1.65 eV和1.68 eV,表明其潜在的应用作为钙钛矿太阳能电池的可见光吸收剂。在第4章中,通过第一性原理计算研究了Mo基双氧化物钙钛矿Sr2BMoO6(B = Mg,Ca和Zn)的电子和光学性质。电子能带结构表明这些双钙钛矿是半导体。碱金属(Mg和Ca)掺杂的双钙钛矿具有直接带隙,而Zn?掺杂的双钙钛矿具有间接带隙。现场变电站极大地影响钙钛矿的电子和光学性质,这可能是设计新型钙钛矿太阳能电池吸收剂的有用方法。 3在第5章中,研究了基于Mo的双氧化物钙钛矿Sr2BMoO6(B = Mg,Cr,Co和Ni),主要研究了离子和电子的混合导电性。从计算出的基态能量分析了取代元素对空位形成和迁移的影响。预计在这些基于Mo 2的双钙钛矿中,共取代的双钙钛矿具有最佳的氧离子传导性。根据计算出的电荷密度,取代的阳离子(例如Mg2 +,Cr3 +,Co2 +和Ni2 +)容纳了从氧空位释放的其他电子,这在这些双氧化物钙钛矿中的氧离子电导率中起着重要作用。第6章,过渡金属氧化物钙钛矿Sr2TixFe2?的理论研究。通过第一原理计算研究了xO6δδ(x = 0.5,1,1.5)。计算出的氧空位的形成能表明氧空位的浓度很高。从氧空位释放的电子倾向于通过弱的共价Fe2O和Ti2O键重组到Fe阳离子的3d轨道上。给定Fe阳离子的电子构型,剩余电子的巡回作用有利于这些钙钛矿中氧离子的导电性。这些结果揭示了Fe 2 O和Ti 2 O键对这些钙钛矿中氧空位形成和迁移的影响,这为探索固体氧化物燃料电池的新电极材料提供了理论信息。在最后的第7章中,概述了总体结论和未来前景。通过第一性原理计算方法研究了过渡金属氧化物双钙钛矿的电子性能和氧离子电导率。为了将来的研究,应该在电极材料的表面模拟氧气评估和还原反应的活性能。结合离子在大块电极中的扩散特性,该模拟方法将为钙钛矿材料的开发提供全面的理论指导。

著录项

  • 作者

    Zhao Shuai;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号