首页> 外文OA文献 >Combining Simple Discriminators for Object Discrimination
【2h】

Combining Simple Discriminators for Object Discrimination

机译:结合简单鉴别符进行对象鉴别

摘要

We propose to combine simple discriminators for object discrimination under the maximum entropy framework or equivalently under the maximum likelihood framework for the exponential family. The duality between the maximum entropy framework and maximum likelihood framework allows us to relate two selection criteria for the discriminators that were proposed in the literature. We illustrate our approach by combining nearest prototype discriminators that are simple to implement and widely applicable as they can be constructed in any feature space with a distance function. For efficient run-time performance we adapt the work on “alternating trees” for multi-class discrimination tasks. We report results on a multi-class discrimination task in which significant gains in performance are seen by combining discriminators under our framework from a variety of easy to construct feature spaces.
机译:我们建议在最大熵框架下或等效地在指数族的最大似然框架下结合简单的判别器进行对象判别。最大熵框架和最大似然框架之间的对偶关系使我们能够为文献中提出的鉴别器选择两个选择标准。我们通过组合最容易实现且可广泛应用的最近原型鉴别器来说明我们的方法,因为它们可以在具有距离函数的任何特征空间中构建。为了获得有效的运行时性能,我们将“备用树”上的工作改编为用于多类歧视任务。我们报告了一个多类别歧视任务的结果,该任务通过组合我们框架下的各种易于构造特征空间的鉴别器,在性能上获得了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号