首页> 外文OA文献 >Methods for solving discontinuous-Galerkin finite element equations with application to neutron transport
【2h】

Methods for solving discontinuous-Galerkin finite element equations with application to neutron transport

机译:非连续Galerkin有限元方程的求解方法及其在中子输运中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider high order discontinuous-Galerkin finite element methods for partial differential equations, with a focus on the neutron transport equation. We begin by examining a method for preprocessing block-sparse matrices, of the type that arise from discontinuous-Galerkin methods, prior to factorisation by a multifrontal solver. Numerical experiments on large two and three dimensional matrices show that this pre-processing method achieves a significant reduction in fill-in, when compared to methods that fail to exploit block structures. A discontinuous-Galerkin finite element method for the neutron transport equation is derived that employs high order finite elements in both space and angle. Parallel Krylov subspace based solvers are considered for both source problems and $k_{eff}$-eigenvalue problems. An a-posteriori error estimator is derived and implemented as part of an h-adaptive mesh refinement algorithm for neutron transport $k_{eff}$-eigenvalue problems. This algorithm employs a projection-based error splitting in order to balance the computational requirements between the spatial and angular parts of the computational domain. An hp-adaptive algorithm is presented and results are collected that demonstrate greatly improved efficiency compared to the h-adaptive algorithm, both in terms of reduced computational expense and enhanced accuracy. Computed eigenvalues and effectivities are presented for a variety of challenging industrial benchmarks. Accurate error estimation (with effectivities of 1) is demonstrated for a collection of problems with inhomogeneous, irregularly shaped spatial domains as well as multiple energy groups. Numerical results are presented showing that the hp-refinement algorithm can achieve exponential convergence with respect to the number of degrees of freedom in the finite element space
机译:我们考虑偏微分方程的高阶不连续Galerkin有限元方法,重点是中子输运方程。我们首先研究一种用于预处理块稀疏矩阵的方法,这种方法是由不连续Galerkin方法产生的,然后通过多前沿求解器进行分解。在大型二维和三维矩阵上的数值实验表明,与无法利用块结构的方法相比,这种预处理方法可显着减少填充。推导了一种中子输运方程的不连续Galerkin有限元方法,该方法在空间和角度上均采用了高阶有限元。对于源问题和$ k_ {eff} $特征值问题,都考虑了基于并行Krylov子空间的求解器。后验误差估计器被推导并实现为针对中子输运$ k_ {eff} $特征值问题的h自适应网格细化算法的一部分。该算法采用基于投影的误差分解,以便在计算域的空间和角度部分之间平衡计算要求。提出了一种hp自适应算法,并收集了结果,与h自适应算法相比,该算法在减少计算开销和提高准确性方面均显示出大大提高的效率。提出了各种具有挑战性的工业基准的计算特征值和有效性。对于具有不均匀,不规则形状的空间域以及多个能量组的问题的集合,证明了准确的误差估计(有效值为1)。数值结果表明,hp细化算法可以实现有限元空间中自由度数量的指数收敛

著录项

  • 作者

    Murphy Steven;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号