首页> 外文OA文献 >Comparison of normalization methods for differential gene expression analysis in RNA-Seq experiments: A matter of relative size of studied transcriptomes
【2h】

Comparison of normalization methods for differential gene expression analysis in RNA-Seq experiments: A matter of relative size of studied transcriptomes

机译:RNA-Seq实验中差异基因表达分析归一化方法的比较:研究的转录组的相对大小

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, RNA-Seq technologies became a powerful tool for transcriptome studies. However, computational methods dedicated to the analysis of high-throughput sequencing data are yet to be standardized. In particular, it is known that the choice of a normalization procedure leads to a great variability in results of differential gene expression analysis. The present study compares the most widespread normalization procedures and proposes a novel one aiming at removing an inherent bias of studied transcriptomes related to their relative size. Comparisons of the normalization procedures are performed on real and simulated data sets. Real RNA-Seq data sets analyses, performed with all the different normalization methods, show that only 50% of significantly differentially expressed genes are common. This result highlights the influence of the normalization step on the differential expression analysis. Real and simulated data sets analyses give similar results showing 3 different groups of procedures having the same behavior. The group including the novel method named “Median Ratio Normalization” (MR N) gives the lower number of false discoveries. Within this group the MR N method is less sensitive to the modification of parameters related to the relative size of transcriptomes such as the number of down- and upregulated genes and the gene expression levels. The newly proposed MR N method efficiently deals with intrinsic bias resulting from relative size of studied transcriptomes. Validation with real and simulated data sets confirmed that MR N is more consistent and robust than existing methods.
机译:近年来,RNA-Seq技术已成为转录组研究的强大工具。但是,专用于分析高通量测序数据的计算方法尚未标准化。特别地,已知标准化方法的选择导致差异基因表达分析结果的巨大差异。本研究比较了最普遍的归一化程序,并提出了一种旨在消除研究的转录组与其相对大小有关的内在偏差的新颖方法。归一化过程的比较是在真实和模拟数据集上执行的。使用所有不同的归一化方法进行的真实RNA-Seq数据集分析显示,只有50%的显着差异表达的基因是常见的。该结果突出了归一化步骤对差异表达分析的影响。真实和模拟的数据集分析得出的结果相似,显示3组不同的过程具有相同的行为。包括名为“中值比率归一化”(MR N)在内的新颖方法的小组提供了更少的错误发现。在这一组中,MR N方法对与转录组相对大小有关的参数修改(例如下调和上调基因的数量以及基因表达水平)的敏感性较低。新提出的MR N方法有效地处理了由于研究的转录组的相对大小而导致的内在偏差。用真实和模拟数据集进行的验证证实,MR N比现有方法更具一致性和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号