首页> 外文OA文献 >Temporal and Hierarchical Models for Planning and Acting in Robotics
【2h】

Temporal and Hierarchical Models for Planning and Acting in Robotics

机译:机器人技术中规划和行为的时间和层次模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The field of AI planning has seen rapid progress over the last decade and planners are now able to find plan with hundreds of actions in a matter of seconds. Despite those important progresses, robotic systems still tend to have a reactive architecture with very little deliberation on the course of the plan they might follow. In this thesis, we argue that a successful integration with a robotic system requires the planner to have capacities for both temporal and hierarchical reasoning. The former is indeed a universal resource central in many robot activities while the latter is a critical component for the integration of reasoning capabilities at different abstraction levels, typically starting with a high level view of an activity that is iteratively refined down to motion primitives. As a first step to carry out this vision, we present a model for temporal planning unifying the generative and hierarchical approaches. At the center of the model are temporal action templates, similar to those of PDDL complemented with a specification of the initial state as well as the expected evolution of the environment over time. In addition, our model allows for the specification of hierarchical knowledge possibly with a partial coverage. Consequently, our model generalizes the existing generative and HTN approaches together with an explicit time representation. In the second chapter, we introduce a planning procedure suitable for our planning model. In order to support hierarchical features, we extend the existing Partial-Order Causal Link approach used in many constraintbased planners, with the notions of task and decomposition. We implement it in FAPE (Flexible Acting and Planning Environment) together with automated problem analysis techniques used for search guidance. We show FAPE to have performance similar to state of the art temporal planners when used in a generative setting. The addition of hierarchical information leads to further performance gain and allows us to outperform traditional planners. In the third chapter, we study the usual methods used to reason on temporal uncertainty while planning. We relax the usual assumption of total observability and instead provide techniques to reason on the observations needed to maintain a plan dispatchable. We show how such needed observations can be detected at planning time and incrementally dealt with by considering the appropriate sensing actions. In a final chapter, we discuss the place of the proposed planning system as a central component for the control of a robotic actor. We demonstrate how the explicit time representation facilitates plan monitoring and action dispatching when dealing with contingent events that require observation. We take advantage of the constraint-based and hierarchical representation to facilitate both plan-repair procedures as well opportunistic plan refinement at acting time.
机译:在过去的十年中,AI规划领域取得了飞速的发展,规划人员现在可以在几秒钟内通过数百项操作找到规划。尽管取得了这些重要的进步,但是机器人系统仍然倾向于具有反应性的体系结构,很少考虑其遵循的计划的过程。在本文中,我们认为与机器人系统的成功集成需要计划者具有时间和层次推理能力。前者确实是许多机器人活动中通用资源的中心,而后者则是在不同抽象级别上集成推理能力的关键组件,通常从对活动进行迭代细化为运动图元的高级视图开始。作为实现这一愿景的第一步,我们提出了一个用于统一生成和分层方法的时间规划模型。该模型的中心是时间动作模板,类似于PDDL的那些,并补充了初始状态以及环境随时间推移的预期演变的规范。另外,我们的模型允许对层次知识的规范(可能具有部分覆盖范围)。因此,我们的模型概括了现有的生成方法和HTN方法以及明确的时间表示。在第二章中,我们介绍适合于我们的计划模型的计划程序。为了支持分层功能,我们扩展了许多基于约束的计划程序中使用的现有的偏序因果链接方法,并引入了任务和分解的概念。我们将它与FAPE(灵活的代理和计划环境)一起使用,并将其用于搜索指导的自动问题分析技术一起实施。我们证明,FAPE在生成环境中使用时,其性能与最新的时间规划者相似。分层信息的添加会进一步提高性能,并使我们的表现优于传统计划者。在第三章中,我们研究了在计划时用于推理时间不确定性的常用方法。我们放宽了对总体可观察性的通常假设,而是提供了一些技术来根据维持可调度计划所需的观察进行推理。我们展示了如何在计划时检测到所需的观测值,并通过考虑适当的传感动作来逐步处理这些观测值。在最后一章中,我们讨论拟议的计划系统作为控制机器人角色的中心组件的位置。我们演示了显式时间表示如何在处理需要观察的突发事件时促进计划监视和行动调度。我们利用基于约束的表示形式和层次表示形式来促进计划修复过程以及在行动时改进机会计划。

著录项

  • 作者

    Bit-Monnot Arthur;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号