首页> 外文OA文献 >Sigma-point Kalman filter data assimilation methods for strongly nonlinear dynamical models.
【2h】

Sigma-point Kalman filter data assimilation methods for strongly nonlinear dynamical models.

机译:用于强非线性动力学模型的Sigma点Kalman滤波器数据同化方法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Performance of an advanced derivative-less, sigma-point Kalman filter (SPKF) data assimilation scheme in a strongly nonlinear dynamical model is investigated. The SPKF data assimilation scheme is compared against standard Kalman filters such as the extended Kalman filter (EKF) and the ensemble Kalman filter (EnKF) schemes. Three particular cases, namely the state estimation, parameter estimation, and joint estimation of states and parameters from a set of discontinuous noisy observations are studied. The problems associated with the use of the tangent linear model (TLM) or the Jacobian when using standard Kalman filters are eliminated when using SPKF data assimilation algorithms. Further, the constraints and issues of SPKF data assimilation in real ocean or atmospheric models are emphasized. A reduced sigma-point subspace approach is proposed and investigated for higher dimensional systems. A low dimensional Lorenz '63 model and a higher dimensional Lorenz '95 model are used as the test-bed for data assimilation experiments. The results of the SPKF data assimilation schemes are compared with those of the standard EKF and EnKF where a highly nonlinear chaotic case is studied. It is shown that the SPKF is capable of estimating the model state and parameters with better accuracy than EKF and EnKF. Numerical experiments show that in all cases, the SPKF can give consistent results with better assimilation skills than EnKF and EKF, and can overcome the drawbacks associated with the use of EKF and EnKF. --P.iii-iv.
机译:研究了强非线性动力学模型中先进的无导数,西格玛点卡尔曼滤波器(SPKF)数据同化方案的性能。将SPKF数据同化方案与标准卡尔曼滤波器(例如扩展卡尔曼滤波器(EKF)和集成卡尔曼滤波器(EnKF)方案)进行比较。研究了三种特殊情况,即状态估计,参数估计以及来自一组不连续噪声观测的状态和参数的联合估计。使用SPKF数据同化算法时,消除了使用标准卡尔曼滤波器时与使用切线线性模型(TLM)或雅可比行列式相关的问题。此外,强调了在实际海洋或大气模型中SPKF数据同化的约束和问题。提出了一种简化的sigma-point子空间方法,并针对高维系统进行了研究。低维Lorenz '63模型和高维Lorenz '95模​​型用作数据同化实验的测试平台。将SPKF数据同化方案的结果与研究高度非线性混沌情况的标准EKF和EnKF的结果进行比较。结果表明,与EKF和EnKF相比,SPKF能够以更高的精度估算模型状态和参数。数值实验表明,在所有情况下,SPKF均具有比EnKF和EKF更好的同化效果,并且可以克服同使用EKF和EnKF相关的缺点。 --P.iii-iv。

著录项

  • 作者

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号