首页> 外文OA文献 >Reduced-rank sigma-point Kalman filter for geophysical data assimilation
【2h】

Reduced-rank sigma-point Kalman filter for geophysical data assimilation

机译:用于地球物理数据同化的降秩sigma-point卡尔曼滤波器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The main goal of my research was to develop a practical scheme for the sigma-point Kalman filter (SPKF) for its application in a realistic climate model. Large computational expense has been an obstacle to applying the SPKF to a high-dimensional system. I addressed this issue by developing an advanced SPKF data-assimilation system. My work also addressed several other factors related to the practical implementation of SPKF. The main objectives of this research were to: (i) investigate two methods to construct a reduced-rank sigma-point unscented Kalman filers (RRSPUKF) (ii) propose a localization scheme for the SPKF and (iii) implement RRSPUKF in a realistic climate model. I present two methods to approximate the error covariance by a reduced-rank approximation. In the first method, truncated singular-value decomposition (TSVD) is applied on the error-covariance matrix calculated in the data space (RRSPUKF(D)) while in the second method TSVD is applied on the error-covariance matrix calculated in the ensemble space (RRSPUKF(E)). The new algorithms are first tested on the Lorenz-96 model, a one-dimensional atmospheric '~toy' model. The performance of both rank-reduction methods are close to that of the full-rank SPKF. I propose a localization method for RRSPUKF(E). The results from numerical experiments on the Lorenz-96 model showed that when the localization and inflation were implemented, the optimal estimate was achieved with a finite number of sigma points. The realistic model I used in this study was the Zebiak-Cane (ZC) model, an intermediate complexity coupled El Niño Southern Oscillation (ENSO) prediction model. The RRSPUKFs are implemented for the ZC model with the assimilation of sea surface temperature anomalies. The results showed that both RRSPUKF(D and E) were able to correctly analyze the phase and intensity of all major ENSO events during the study period with relatively similar estimation accuracy. Furthermore, the RRSPUKF was compared against ensemble square-root filter (EnSR
机译:我研究的主要目的是为西格玛点卡尔曼滤波器(SPKF)制定一个实用的方案,并将其应用于现实的气候模型中。大量的计算费用一直是将SPKF应用于高维系统的障碍。我通过开发高级SPKF数据同化系统解决了这个问题。我的工作还解决了与SPKF实际实施相关的其他几个因素。这项研究的主要目的是:(i)研究两种方法来构造降级的sigma-points无味卡尔曼锉(RRSPUKF)(ii)提出SPKF的本地化方案,以及(iii)在现实的气候中实施RRSPUKF模型。我提出了两种方法,可以通过降秩近似来近似误差协方差。在第一种方法中,将截短奇异值分解(TSVD)应用于在数据空间(RRSPUKF(D))中计算的误差-协方差矩阵,而在第二种方法中,将TSVD应用于在整体中计算的误差-协方差矩阵空格(RRSPUKF(E))。新算法首先在Lorenz-96模型(一维大气“玩具”模型)上进行了测试。两种降级方法的性能都接近于全等级SPKF。我提出了RRSPUKF(E)的本地化方法。在Lorenz-96模型上进行的数值实验结果表明,当实施了局部化和膨胀处理后,可以在有限的sigma点数量下实现最佳估计。我在这项研究中使用的现实模型是Zebiak-Cane(ZC)模型,这是一种中等复杂程度的耦合厄尔尼诺南方涛动(ENSO)预测模型。 RRSPUKF用于ZC模型,并吸收了海面温度异常。结果表明,RRSPUKF(D和E)能够以相对相似的估计准确度正确分析研究期内所有主要ENSO事件的相位和强度。此外,将RRSPUKF与集成平方根滤波器(EnSR

著录项

  • 作者

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号