首页> 外文学位 >Sigma-point Kalman filters for probabilistic inference in dynamic state-space models.
【24h】

Sigma-point Kalman filters for probabilistic inference in dynamic state-space models.

机译:Sigma点卡尔曼滤波器,用于动态状态空间模型中的概率推断。

获取原文
获取原文并翻译 | 示例

摘要

Probabilistic inference is the problem of estimating the hidden variables (states or parameters) of a system in an optimal and consistent fashion as a set of noisy or incomplete observations of the system becomes available online. The optimal solution to this problem is given by the recursive Bayesian estimation algorithm which recursively updates the posterior density of the system state as new observations arrive. This posterior density constitutes the complete solution to the probabilistic inference problem, and allows us to calculate any "optimal" estimate of the state. Unfortunately, for most real-world problems, the optimal Bayesian recursion is intractable and approximate solutions must be used. Within the space of approximate solutions, the extended Kalman filter (EKF) has become one of the most widely used algorithms with applications in state, parameter and dual estimation. Unfortunately, the EKF is based on a sub-optimal implementation of the recursive Bayesian estimation framework applied to Gaussian random variables. This can seriously affect the accuracy or even lead to divergence of any inference system that is based on the EKF or that uses the EKF as a component part. Recently a number of related novel, more accurate and theoretically better motivated algorithmic alternatives to the EKF have surfaced in the literature, with specific application to state estimation for automatic control. We have extended these algorithms, all based on derivativeless deterministic sampling based approximations of the relevant Gaussian statistics, to a family of algorithms called Sigma-Point Kalman Filters (SPKF). Furthermore, we successfully expanded the use of this group of algorithms (SPKFs) within the general field of probabilistic inference and machine learning, both as stand-alone filters and as subcomponents of more powerful sequential Monte Carlo methods (particle filters). We have consistently shown that there are large performance benefits to be gained by applying Sigma-Point Kalman filters to areas where EKFs have been used as the de facto standard in the past, as well as in new areas where the use of the EKF is impossible.
机译:概率推论是随着一系列嘈杂或不完整的系统观测结果在线可用而以最佳且一致的方式估算系统的隐藏变量(状态或参数)的问题。递归贝叶斯估计算法为该问题提供了最佳解决方案,该算法在出现新观测值时递归更新系统状态的后验密度。该后验密度构成了概率推理问题的完整解决方案,并允许我们计算状态的任何“最佳”估计。不幸的是,对于大多数现实世界中的问题,最佳贝叶斯递归是难以解决的,必须使用近似解。在近似解的范围内,扩展卡尔曼滤波器(EKF)已成为状态,参数和对偶估计中应用最广泛的算法之一。不幸的是,EKF基于应用于高斯随机变量的递归贝叶斯估计框架的次优实现。这会严重影响准确性,甚至导致基于EKF或使用EKF作为组成部分的任何推理系统的分歧。最近,在文献中出现了许多相关的新颖,更准确,理论上更有动机的算法来替代EKF,并将其具体应用于自动控制的状态估计。我们已将这些算法扩展到名为Sigma-Point Kalman滤波器(SPKF)的一系列算法,这些算法均基于基于相关高斯统计量的无导数确定性采样。此外,我们在概率推理和机器学习的一般领域中成功地扩展了这组算法(SPKF)的使用,既作为独立过滤器,又作为更强大的顺序蒙特卡洛方法(粒子过滤器)的子组件。我们一直表明,通过将Sigma-Point Kalman滤波器应用于过去已将EKF用作实际标准的区域以及无法使用EKF的新区域,可以获得很大的性能优势。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号