首页> 美国卫生研究院文献>other >Accounting for Location Error in Kalman Filters: Integrating Animal Borne Sensor Data into Assimilation Schemes
【2h】

Accounting for Location Error in Kalman Filters: Integrating Animal Borne Sensor Data into Assimilation Schemes

机译:在卡尔曼滤波器占位置错误:集成动物源性传感器数据为同化方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Data assimilation is a crucial aspect of modern oceanography. It allows the future forecasting and backward smoothing of ocean state from the noisy observations. Statistical methods are employed to perform these tasks and are often based on or related to the Kalman filter. Typically Kalman filters assumes that the locations associated with observations are known with certainty. This is reasonable for typical oceanographic measurement methods. Recently, however an alternative and abundant source of data comes from the deployment of ocean sensors on marine animals. This source of data has some attractive properties: unlike traditional oceanographic collection platforms, it is relatively cheap to collect, plentiful, has multiple scientific uses and users, and samples areas of the ocean that are often difficult of costly to sample. However, inherent uncertainty in the location of the observations is a barrier to full utilisation of animal-borne sensor data in data-assimilation schemes. In this article we examine this issue and suggest a simple approximation to explicitly incorporate the location uncertainty, while staying in the scope of Kalman-filter-like methods. The approximation stems from a Taylor-series approximation to elements of the updating equation.
机译:数据同化是现代海洋学的重要方面。它可以从嘈杂的观测结果中对海洋状态进行未来的预测和向后平滑。统计方法被用来执行这些任务,并且通常基于或与卡尔曼滤波器有关。通常,卡尔曼滤波器假定与观测相关的位置是确定的。这对于典型的海洋测量方法是合理的。然而,近来,替代的且丰富的数据源来自在海洋动物上部署海洋传感器。这种数据源具有一些​​吸引人的特性:与传统的海洋学收集平台不同,它的收集相对便宜,数量众多,具有多种科学用途和用户,并且对海洋区域进行采样通常很难进行昂贵的采样。但是,观测位置固有的不确定性是在数据同化方案中充分利用动物传播的传感器数据的障碍。在本文中,我们研究了这个问题,并提出了一种简单的近似方法,以明确纳入位置不确定性,同时又保留类似卡尔曼滤波器的方法的范围。该近似源自更新方程元素的泰勒级数近似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号