首页> 外文OA文献 >Argumentation mining: How can a machine acquire world and common sense knowledge? (abstract of keynote lecture)
【2h】

Argumentation mining: How can a machine acquire world and common sense knowledge? (abstract of keynote lecture)

机译:论证挖掘:机器如何获取世界知识和常识? (主题演讲摘要)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Argumentation mining regards an advanced form of human language understanding by the machine. This is a challenging task for a machine. When sufficient explicit discourse markers are present in the language utterances, the argumentation can be interpreted by the machine with an acceptable degree of accuracy. However, in many real settings, the task is much more difficult due to the lack or ambiguity of the discourse markers, and the fact that a substantial amount of knowledge needed for the correct recognition of the argumentation, its components and their relationships is not explicitly present in the text, but makes up the background knowledge that humans possess when interpreting language. The lecture focuses on how the machine can automatically acquire such knowledge.In this lecture we consider argumentation mining from written text. First, we give an overview of the latest methods for human language understanding that map language to a formal knowledge representation that facilitates other tasks (for instance, a representation that is used to visualize the argumentation or that is easily shared in a decision or argumentation support system). Most current systems are trained on texts that are manually annotated. Then we go deeper into the new field of representation learning that nowadays is very much studied in computational linguistics. This field investigates methods for representing language as statistical concepts or as vectors, allowing straightforward methods of compositionality. The methods often use deep learning and its underlying neural network technologies to learn concepts from large text collections in an unsupervised way (i.e., without the need for manual annotations). We show how these methods can help the argumentation mining process, but also demonstrate that these methods are still insufficient to automatically acquire the necessary background knowledge and more specifically world and common sense knowledge. We propose a number of ways to improve the learning from textual, visual or database data, and discuss how we can integrate the learned knowledge in the argumentation mining process.
机译:自变量挖掘将机器视为人类语言理解的高级形式。对于机器而言,这是一项艰巨的任务。当语言话语中存在足够的显性话语标记时,机器可以以可接受的准确度来解释论据。但是,在许多实际环境中,由于话语标记的缺乏或含糊不清,并且没有正确识别论点,其组成及其关系的大量知识这一事实,使这项任务更加困难。存在于文本中,但构成了人类在解释语言时所拥有的背景知识。本讲座重点介绍机器如何自动获取此类知识。在本讲座中,我们考虑从书面文本中进行论证挖掘。首先,我们概述了最新的人类语言理解方法,该方法将语言映射到有助于其他任务的形式化知识表示形式(例如,用于可视化论点的表示形式,或在决策或论证支持中易于共享的表示形式)系统)。当前大多数系统都接受了手动注释的文本的培训。然后我们更深入地研究了表示语言学习的新领域,如今在计算语言学中对此进行了大量研究。该领域研究了将语言表示为统计概念或向量的方法,从而允许采用直接的构图方法。这些方法通常使用深度学习及其底层的神经网络技术,以无人监督的方式(即无需手动注释)从大型文本集中学习概念。我们将展示这些方法如何帮助论证挖掘过程,同时也证明这些方法仍不足以自动获取必要的背景知识,更具体地说是自动获取世界常识。我们提出了多种方法来改善从文本,视觉或数据库数据的学习,并讨论了如何在论证挖掘过程中整合所学知识。

著录项

  • 作者

    Moens Marie-Francine;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号