首页> 外文OA文献 >Simulation of time-harmonic acoustic problems with a coupled isogeometric-meshless approach
【2h】

Simulation of time-harmonic acoustic problems with a coupled isogeometric-meshless approach

机译:用等几何-无网格耦合方法模拟时谐声学问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the simulation of acoustic wave propagation, addressed by the Helmholtz equation, the Finite Element Method (FEM) is currently the most widely employed technique in commercial simulation tools. However, two main drawbacks are till present. First, the numerical results heavily depend on the regularity of the mesh used for the discretization, whose generation may take a significant part of the total analysis time, especially in three-dimensional applications. And second, the method suffers from dispersion errors in the higher frequency region, which requires very fine (and therefore computationally heavy) meshes for the simulation of short wave problems. For this reasons in the last years literature focused also on alternative numerical techniques. Meshless methods are a possible solution for the first drawback. Concerning the second one, methods employing basis functions with higher order continuity are in general expected to perform better. In this framework isogeometric analysis has been shown to significantly improve the accuracy with respect to FEM for Helmholtz problems. Unfortunately this method does not possess the same flexibility as FEM in the volume discretization of complex shaped domains. While it is very easy to define a tensor product parameterization on a cube or on a sphere for instance, the problem becomes complicated when an arbitrary domain has to be represented. Even with the introduction of modified formulations such as T-splines, hierarchical B-splines and trimming techniques, this problem is still open in three dimensions. In a recent work a coupled isogeometric-meshless approach that elegantly solves this problem has been proposed. In particular the isogeometric parameterization is employed only on a thin region close to the boundary of the domain and then the isogeometric functions are blended with local maximum entropy (LME) mesh-free approximants in the interior of the domain. This method appears particularly suitable for the simulation of the acoustic wave propagation problem since the LME basis functions are C8-continuous and therefore, like isogeometric methods, perform better than FEM in the higher frequency region. In addition, with the coupled approach, the correct geometric representation is preserved.This study reviews the mathematical formulation of the method and considers some numerical applications, where the boundary of the domain is defined by a NURBS curve, including a two-dimensional car cavity geometry.
机译:在Helmholtz方程解决的声波传播模拟中,有限元方法(FEM)是目前在商业模拟工具中使用最广泛的技术。然而,目前仍存在两个主要缺点。首先,数值结果在很大程度上取决于用于离散化的网格的规则性,网格的生成可能占用总分析时间的很大一部分,尤其是在三维应用中。其次,该方法在较高的频率区域中存在色散误差,这需要非常精细的网格(因此计算量较大)来模拟短波问题。由于这个原因,在最近几年中,文献也集中在替代数值技术上。无网格方法是第一个缺点的可能解决方案。关于第二个,通常期望采用具有较高阶连续性的基函数的方法执行得更好。在此框架中,等几何分析已显示出可以极大地提高有关亥姆霍兹问题的有限元法的准确性。不幸的是,这种方法在复杂形状域的体积离散化方面不具有与FEM相同的灵活性。例如,在立方体或球体上定义张量乘积参数化非常容易,但是当必须表示任意域时,问题变得复杂。即使引入了修改的公式(例如T样条,分层B样条和修整技术),此问题仍然在三个维度上存在。在最近的工作中,已经提出了一种优雅地解决该问题的耦合等几何-无网格方法。特别是,仅在靠近域边界的薄区域上使用等几何参数化,然后将等几何函数与域内部的局部最大熵(LME)无网格近似值混合。该方法似乎特别适合于声波传播问题的仿真,因为LME基函数是C8连续的,因此,与等几何方法一样,它在较高频率区域的性能优于FEM。此外,通过耦合方法可以保留正确的几何表示形式。本研究回顾了该方法的数学公式,并考虑了一些数值应用,其中领域的边界由NURBS曲线定义,包括二维车腔几何。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号