首页> 外文OA文献 >Lifted Inference and Learning in Statistical Relational Models
【2h】

Lifted Inference and Learning in Statistical Relational Models

机译:统计关系模型中的推论和学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Statistical relational models combine aspects of first-order logic and probabilistic graphical models, enabling them to model complex logical and probabilistic interactions between large numbers of objects. This level of expressivity comes at the cost of increased complexity of inference, motivating a new line of research in lifted probabilistic inference. By exploiting symmetries of the relational structure in the model, and reasoning about groups of objects as a whole, lifted algorithms dramatically improve the run time of inference and learning.The thesis has five main contributions. First, we propose a new method for logical inference, calledfirst-order knowledge compilation. We show that by compiling relational models into a new circuit language, hard inference problems become tractable to solve. Furthermore, we present an algorithm that compiles relational models into our circuit language. Second, we show how to use first-order knowledge compilation for statistical relational models, leading to a new state-of-the-art lifted probabilistic inference algorithm. Third, we develop a formal framework for exact lifted inference, including a definition in terms of its complexity w.r.t. the number of objects in the world. From this follows a first completeness result, showing that the two-variable class of statistical relational models always supports lifted inference. Fourth, we present an algorithm for approximate lifted inference by performing exact lifted inference in a relaxed, approximate model. Statistical relational models are receiving a lot of attention today because of their expressive power for learning. Fifth, we propose to harness the full power of relational representations for that task, by using lifted parameter learning. The techniques presented in this thesis are evaluated empirically on statistical relational models of thousands of interacting objects and millions of random variables.
机译:统计关系模型结合了一阶逻辑和概率图形模型的各个方面,使它们能够对大量对象之间的复杂逻辑和概率交互进行建模。这种表达水平的代价是推理的复杂性增加,从而激发了关于提升概率推理的新研究领域。通过利用模型中关系结构的对称性,并从整体上对对象组进行推理,提升算法大大提高了推理和学习的运行时间。论文有五个主要贡献。首先,我们提出了一种用于逻辑推理的新方法,称为一阶知识编译。我们表明,通过将关系模型编译为一种新的电路语言,硬推理问题变得易于解决。此外,我们提出了一种将关系模型编译成电路语言的算法。其次,我们展示了如何将一阶知识汇编用于统计关系模型,从而得出了一种最新的提升的概率推断算法。第三,我们为精确的推论开发了一个正式的框架,包括关于复杂性w.r.t.世界上物体的数量。由此得出的第一个完整性结果表明,统计关系模型的两变量类始终支持提升推断。第四,我们提出了一种通过在松弛的近似模型中执行精确的提升推理来近似提升推理的算法。统计关系模型由于具有表达能力,因此在今天受到了广泛的关注。第五,我们建议通过提升参数学习来利用关系表示的全部功能。本文对数千个交互对象和数百万个随机变量的统计关系模型进行了经验评估。

著录项

  • 作者

    Van den Broeck Guy;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 nl
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号