首页> 外文期刊>Machine Learning >Relational Learning with Statistical Predicate Invention: Better Models for Hypertext
【24h】

Relational Learning with Statistical Predicate Invention: Better Models for Hypertext

机译:统计谓词发明的关系学习:超文本的更好模型

获取原文
获取原文并翻译 | 示例

摘要

We present a new approach to learning hypertext classifiers that combines a statistical text-learning method with a relational rule learner. This approach is well suited to learning in hypertext domains because its statistical component allows it to characterize text in terms of word frequencies, whereas its relational component is able to describe how neighboring documents are related to each other by hyperlinks that connect them.
机译:我们提出了一种学习超文本分类器的新方法,该方法将统计文本学习方法与关系规则学习器结合在一起。这种方法非常适合在超文本域中学习,因为它的统计成分允许它以词频来表征文本,而其关系成分则能够描述相邻文档如何通过连接它们的超链接相互关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号