首页> 外文OA文献 >On replaying process execution traces containing positive and negative events
【2h】

On replaying process execution traces containing positive and negative events

机译:重播包含肯定和否定事件的流程执行跟踪时

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Process mining encompasses the research area which is concerned with knowledge discovery from event logs. One common process mining task focuses on conformance checking, comparing discovered or designed process models with actual real-life behavior as captured in event logs in order to assess the fitness, precision and generalization capabilities of the process model. In many cases, such conformance checking techniques involve some kind of “replay” of the execution traces on the process model at hand. In this report, we discuss in depth the problem of replaying event traces on Petri nets for sequences containing both positive and negative events. Negative events are activities which should be prevented from taking place (contrary to opposite events which should be allowed) and are leveraged by existing conformance checking techniques to determine whether a given model is not too overfitting or underfitting. However, such negative events must be treated differently from their positive counterparts during trace replay; different replay strategies exist which impact the manner by which positive and negative events are evaluated, so that these different strategies also influence the outcome of a conformance checking evaluation. Therefore, we aim to provide an overview of the root causes which make trace replay a hard problem, together with a description of different replay strategies and their impact on process model quality evaluation.This technical report serves as background material for the following paper: vanden Broucke, S.K.L.M., De Weerdt, J.,Vanthienen, J., Baesens, B. (2013). Determining Process Model Precision and Generalization with Weighted ArtificialNegative Events. IEEE Transactions on Knowledge and Data Engineering.
机译:流程挖掘涵盖了与从事件日志中发现知识有关的研究领域。一项常见的流程挖掘任务集中于一致性检查,将发现或设计的流程模型与事件日志中捕获的实际实际行为进行比较,以评估流程模型的适用性,准确性和泛化能力。在许多情况下,此类一致性检查技术涉及到手头流程模型上执行轨迹的某种“重播”。在此报告中,我们深入讨论了在包含正事件和负事件的序列的Petri网络上重播事件跟踪的问题。负面事件是应避免发生的活动(与应允许的相反事件相反),并通过现有的一致性检查技术加以利用,以确定给定的模型是否过拟合或过拟合。但是,在跟踪重放期间,必须将这些负面事件与正面事件区别对待;存在不同的重播策略,这些策略会影响对正面和负面事件进行评估的方式,因此这些不同的策略也会影响一致性检查评估的结果。因此,我们旨在概述使跟踪重播成为难题的根本原因,并描述不同的重播策略及其对过程模型质量评估的影响。该技术报告将作为以下论文的背景材料:vanden Broucke,SKLM,De Weerdt,J.,Vanthienen,J.,Baesens,B.(2013年)。用加权的人工负事件确定过程模型的精度和概括性。 IEEE知识和数据工程事务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号