首页> 外文OA文献 >The Fractional Fourier Transform and Its Application to Fault Signal Analysis
【2h】

The Fractional Fourier Transform and Its Application to Fault Signal Analysis

机译:分数阶傅里叶变换及其在故障信号分析中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To a large extent mathematical transforms are applied on a signal to uncover information that is concealed, and the capability of such transforms is valuable for signal processing. One such transforms widely used in this area, is the conventional Fourier Transform (FT), which decomposes a stationary signal into different frequency components. However, a major drawback of the conventional transform is that it does not easily render itself to the analysis of non-stationary signals such as a frequency modulated (FM) or amplitude modulated (AM) signal. The different frequency components of complex signals cannot be easily distinguished and separated from one another using the conventional FT. So in this thesis an innovative mathematical transform, Fractional Fourier Transform (FRFT), has been considered, which is more suitable to process non-stationary signals such as FM signals and has the capability not only of distinguishing different frequency components of a multi-component signal but also separating them in a proper domain, different than the traditional time or frequency domain. The discrete-time FRFT (DFRFT) developed along with its derivatives, such as Multi-angle-DFRFT (MA-DFRFT), Slanted Spectrum and Spectrogram Based on Slanted Spectrum (SBSS) are tools belonging to the same FRFT family, and they could provide an effective approach to identify unknown signals and distinguish the different frequency components contained therein. Both artificial stationary and FM signals have been researched using the DFRFT and some derivative tools from the same family. Moreover, to accomplish a contrast with the traditional tools such as FFT and STFT, performance comparisons are shown to support the DFRFT as an effective tool in multi-component chirp signal analysis. The DFRFT taken at the optimum transform order on a single-component FM signal has provided higher degree of signal energy concentration compared to FFT results; and the Slanted Spectrum taken along the slant line obtained from the MA-DFRFT demonstration has shown much better discrimination between different frequency components of a multi-component FM signal. As a practical application of these tools, the motor current signal has been analyzed using the DFRFT and other tools from FRFT family to detect the presence of a motor bearing fault and obtain the fault signature frequency. The conclusion drawn about the applicability of DFRFT and other derivative tools on AM signals with very slowly varying FM phenomena was not encouraging. Tools from the FRFT family appear more effective on FM signals, whereas AM signals are more effectively analyzed using traditional methods like spectrogram or its derivatives. Such methods are able to identify the signature frequency of faults while using less computational time and memory.
机译:在很大程度上,将数学变换应用于信号以发现隐藏的信息,并且这种变换的能力对于信号处理很有价值。传统的傅立叶变换(FT)是在该领域广泛使用的一种这样的变换,它将固定信号分解为不同的频率分量。但是,常规变换的主要缺点在于,它不容易进行非平稳信号的分析,例如频率调制(FM)或幅度调制(AM)信号。使用常规FT不能轻易地区分和分离复杂信号的不同频率分量。因此,在本文中,我们考虑了一种创新的数学变换,即分数阶傅立叶变换(FRFT),它更适合处理诸如FM信号之类的非平稳信号,并且不仅具有区分多分量的不同频率分量的能力,信号,但也要在适当的域中将它们分开,这不同于传统的时域或频域。离散时间FRFT(DFRFT)及其衍生产品,例如多角度DFRFT(MA-DFRFT),倾斜频谱和基于倾斜频谱的频谱图(SBSS),都是同一FRFT家族的工具,它们可以提供一种识别未知信号并区分其中包含的不同频率分量的有效方法。人工平稳信号和FM信号均已使用DFRFT和同一家族的一些衍生工具进行了研究。此外,为了与传统工具(例如FFT和STFT)形成对比,显示出性能比较以支持DFRFT作为多分量线性调频信号分析中的有效工具。与FFT结果相比,以最佳变换顺序对单分量FM信号进行的DFRFT提供了更高的信号能量集中度;并且从MA-DFRFT演示获得的沿倾斜线获取的倾斜频谱显示了多分量FM信号的不同频率分量之间更好的区分。作为这些工具的实际应用,已使用DFRFT和FRFT系列的其他工具对电动机电流信号进行了分析,以检测电动机轴承故障的存在并获得故障信号的频率。 DFRFT和其他派生工具在具有非常缓慢变化的FM现象的AM信号上的适用性得出的结论并不令人鼓舞。 FRFT系列的工具对FM信号似乎更有效,而使用频谱图或其派生图等传统方法可以更有效地分析AM信号。这样的方法能够识别故障的特征频率,同时使用更少的计算时间和内存。

著录项

  • 作者

    Duan Xiao;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号