首页> 外文OA文献 >Constrained expectation-maximization (EM), dynamic analysis, linear quadratic tracking, and nonlinear constrained expectation-maximation (EM) for the analysis of genetic regulatory networks and signal transduction networks
【2h】

Constrained expectation-maximization (EM), dynamic analysis, linear quadratic tracking, and nonlinear constrained expectation-maximation (EM) for the analysis of genetic regulatory networks and signal transduction networks

机译:约束期望最大值(EM),动态分析,线性二次跟踪和非线性约束期望最大值(EM),用于分析遗传调控网络和信号转导网络

摘要

Despite the immense progress made by molecular biology in cataloging andcharacterizing molecular elements of life and the success in genome sequencing, therehave not been comparable advances in the functional study of complex phenotypes.This is because isolated study of one molecule, or one gene, at a time is not enough byitself to characterize the complex interactions in organism and to explain the functionsthat arise out of these interactions. Mathematical modeling of biological systems isone way to meet the challenge.My research formulates the modeling of gene regulation as a control problem andapplies systems and control theory to the identification, analysis, and optimal controlof genetic regulatory networks. The major contribution of my work includes biologicallyconstrained estimation, dynamical analysis, and optimal control of genetic networks.In addition, parameter estimation of nonlinear models of biological networksis also studied, as a parameter estimation problem of a general nonlinear dynamicalsystem. Results demonstrate the superior predictive power of biologically constrainedstate-space models, and that genetic networks can have differential dynamic propertieswhen subjected to different environmental perturbations. Application of optimalcontrol demonstrates feasibility of regulating gene expression levels. In the difficultproblem of parameter estimation, generalized EM algorithm is deployed, and a set of explicit formula based on extended Kalman filter is derived. Application of themethod to synthetic and real world data shows promising results.
机译:尽管分子生物学在对生命的分子元素进行分类和表征方面取得了巨大的进步,并且在基因组测序方面取得了成功,但是在复杂表型的功能研究中却没有可比的进步,这是因为在一个分子上对一个分子或一个基因的分离研究。时间本身不足以表征有机体中复杂的相互作用并解释这些相互作用产生的功能。生物系统的数学建模是应对挑战的一种方法。我的研究将基因调控的建模公式化为一个控制问题,并将系统和控制理论应用于遗传调控网络的识别,分析和最优控制。我的主要工作包括生物约束估计,动力学分析和遗传网络的最优控制。此外,还研究了生物网络非线性模型的参数估计,作为一般非线性动力学系统的参数估计问题。结果表明,生物学上受约束的状态空间模型具有优越的预测能力,并且遗传网络在受到不同的环境扰动时可以具有不同的动态特性。优化控制的应用证明了调节基因表达水平的可行性。在参数估计的难题中,采用了广义EM算法,并推导了一套基于扩展卡尔曼滤波的显式公式。该方法在合成和现实世界数据中的应用显示出可喜的结果。

著录项

  • 作者

    Xiong Hao;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类
  • 入库时间 2022-08-20 19:41:53

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号