首页> 外文学位 >Constrained expectation-maximization (EM), dynamic analysis, linear quadratic tracking, and nonlinear constrained expectation-maximization (EM) for the analysis of genetic regulatory networks and signal transduction networks.
【24h】

Constrained expectation-maximization (EM), dynamic analysis, linear quadratic tracking, and nonlinear constrained expectation-maximization (EM) for the analysis of genetic regulatory networks and signal transduction networks.

机译:约束期望最大化(EM),动态分析,线性二次跟踪和非线性约束期望最大化(EM),用于分析遗传调控网络和信号转导网络。

获取原文
获取原文并翻译 | 示例

摘要

Despite the immense progress made by molecular biology in cataloging and characterizing molecular elements of life and the success in genome sequencing, there have not been comparable advances in the functional study of complex phenotypes. This is because isolated study of one molecule, or one gene, at a time is not enough by itself to characterize the complex interactions in organism and to explain the functions that arise out of these interactions. Mathematical modeling of biological systems is one way to meet the challenge.;My research formulates the modeling of gene regulation as a control problem and applies systems and control theory to the identification, analysis, and optimal control of genetic regulatory networks. The major contribution of my work includes biologically constrained estimation, dynamical analysis, and optimal control of genetic networks. In addition, parameter estimation of nonlinear models of biological networks is also studied, as a parameter estimation problem of a general nonlinear dynamical system. Results demonstrate the superior predictive power of biologically constrained state-space models, and that genetic networks can have differential dynamic properties when subjected to different environmental perturbations. Application of optimal control demonstrates feasibility of regulating gene expression levels. In the difficult problem of parameter estimation, generalized EM algorithm is deployed, and a set of explicit formula based on extended Kalman filter is derived. Application of the method to synthetic and real world data shows promising results.
机译:尽管分子生物学在对生命的分子元素进行分类和表征方面取得了巨大的进步,并且在基因组测序中取得了成功,但是在复杂表型的功能研究中还没有可比的进展。这是因为一次单独研究一个分子或一个基因不足以描述生物体内复杂的相互作用并解释这些相互作用所产生的功能。生物系统的数学建模是应对挑战的一种方法。我的研究将基因调控的建模公式化为一个控制问题,并将系统和控制理论应用于遗传调控网络的识别,分析和最优控制。我的工作的主要贡献包括生物约束估计,动力学分析和遗传网络的最佳控制。另外,还研究了生物网络非线性模型的参数估计问题,作为一般非线性动力学系统的参数估计问题。结果表明,生物学上受约束的状态空间模型具有优越的预测能力,并且遗传网络在受到不同的环境扰动时可以具有不同的动态特性。最佳对照的应用证明了调节基因表达水平的可行性。在参数估计的难题中,采用了广义EM算法,并推导了一套基于扩展卡尔曼滤波器的显式公式。该方法在合成和真实世界数据中的应用显示出令人鼓舞的结果。

著录项

  • 作者

    Xiong, Hao.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Biology Bioinformatics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 227 p.
  • 总页数 227
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:39:10

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号