首页> 外文OA文献 >A Novel Probability Model for LncRNA–Disease Association Prediction Based on the Naïve Bayesian Classifier
【2h】

A Novel Probability Model for LncRNA–Disease Association Prediction Based on the Naïve Bayesian Classifier

机译:基于Naïve贝叶斯分类器的LNCRNA疾病关联预测新概率模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An increasing number of studies have indicated that long-non-coding RNAs (lncRNAs) play crucial roles in biological processes, complex disease diagnoses, prognoses, and treatments. However, experimentally validated associations between lncRNAs and diseases are still very limited. Recently, computational models have been developed to discover potential associations between lncRNAs and diseases by integrating multiple heterogeneous biological data; this has become a hot topic in biological research. In this article, we constructed a global tripartite network by integrating a variety of biological information including miRNA–disease, miRNA–lncRNA, and lncRNA–disease associations and interactions. Then, we constructed a global quadruple network by appending gene–lncRNA interaction, gene–disease association, and gene–miRNA interaction networks to the global tripartite network. Subsequently, based on these two global networks, a novel approach was proposed based on the naïve Bayesian classifier to predict potential lncRNA–disease associations (NBCLDA). Comparing with the state-of-the-art methods, our new method does not entirely rely on known lncRNA–disease associations, and can achieve a reliable performance with effective area under ROC curve (AUCs)in leave-one-out cross validation. Moreover, in order to further estimate the performance of NBCLDA, case studies of colorectal cancer, prostate cancer, and glioma were implemented in this paper, and the simulation results demonstrated that NBCLDA can be an excellent tool for biomedical research in the future.
机译:越来越多的研究表明,长期非编码的RNA(LNCRNA)在生物过程中起重要作用,复杂的疾病诊断,预后和治疗。然而,LNCRNA和疾病之间的实验验证的关联仍然非常有限。最近,已经开发了计算模型来通过整合多种异构生物数据来发现LNCRNA和疾病之间的潜在关联;这已成为生物学研究中的热门话题。在本文中,我们通过将包括miRNA-Diseage,miRNA-lncrna和Lncrna-Distract Associons和相互作用的各种生物学信息构建了全球三方网络。然后,我们通过将基因-LNCRNA相互作用,基因疾病关联和基因 - miRNA互动网络施加到全球三方网络,构建了全局四元化网络。随后,基于这两个全球网络,基于Naïve贝叶斯分类器提出了一种新的方法,以预测潜在的LNCRNA疾病关联(NBCLDA)。与最先进的方法相比,我们的新方法并不完全依赖已知的LNCRNA疾病关联,并且可以在休假交叉验证中获得ROC曲线(AUC)下的有效面积可靠的性能。此外,为了进一步估计NBCLDA的性能,本文实施了结直肠癌,前列腺癌和胶质瘤的案例研究,仿真结果表明NBCLDA可以成为未来生物医学研究的优秀工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号