首页> 外文OA文献 >Heating Homes with Servers: Workload Scheduling for Heat Reuse in Distributed Data Centers
【2h】

Heating Homes with Servers: Workload Scheduling for Heat Reuse in Distributed Data Centers

机译:带服务器的加热房屋:在分布式数据中心中的热重用工作负载调度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Data centers consume lots of energy to execute their computational workload and generate heat that is mostly wasted. In this paper, we address this problem by considering heat reuse in the case of a distributed data center that features IT equipment (i.e., servers) installed in residential homes to be used as a primary source of heat. We propose a workload scheduling solution for distributed data centers based on a constraint satisfaction model to optimally allocate workload on servers to reach and maintain the desired home temperature setpoint by reusing residual heat. We have defined two models to correlate the heat demand with the amount of workload to be executed by the servers: a mathematical model derived from thermodynamic laws calibrated with monitored data and a machine learning model able to predict the amount of workload to be executed by a server to reach a desired ambient temperature setpoint. The proposed solution was validated using the monitored data of an operational distributed data center. The server heat and power demand mathematical model achieve a correlation accuracy of 11.98% while in the case of machine learning models, the best correlation accuracy of 4.74% is obtained for a Gradient Boosting Regressor algorithm. Also, our solution manages to distribute the workload so that the temperature setpoint is met in a reasonable time, while the server power demand is accurately following the heat demand.
机译:数据中心消耗了许多能量来执行其计算工作负载并产生大多数浪费的热量。在本文中,我们通过考虑在分布式数据中心的情况下考虑热量使用,该问题在分布式数据中心(即,服务器)中安装在居住的房屋中以用作主要的热源。我们基于约束满足模型提出了一种用于分布式数据中心的工作负载调度解决方案,以通过重用残余热量来最佳地分配在服务器上的工作量,以达到和维持所需的家庭温度设定值。我们已定义两个模型,以将热量需求与服务器执行的工作量相关联:从监控数据和机器学习模型校准的热力学定律导出的数学模型以及能够预测由a执行的工作量的量。服务器达到所需的环境温度设定值。使用操作分布式数据中心的监视数据验证所提出的解决方案。服务器热量和功率需求数学模型在机器学习模型的情况下实现了11.98%的相关精度,获得了4.74%的最佳相关精度,用于梯度升压回归算法。此外,我们的解决方案管理以分配工作量,以便在合理的时间内满足温度设定值,而服务器电源需求在热需求之后准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号