【24h】

Workload-Aware Scheduling Across Geo-distributed Data Centers

机译:跨地理分布的数据中心的工作负载感知计划

获取原文
获取原文并翻译 | 示例

摘要

As the rapid development of big data applications, more and more data analytics are based on geographically distributed data centers. Recent works mainly focus on task and data placement to reduce data transmission among these geodistributed data centers. In this paper, we argue that the task execution delay may also impact the response time, especially in the hot-spot data centers. We define geo-distributed workload-aware scheduling problem, aiming to minimize the overall delay of data transmission and task execution. And then, we prove it to be NP-complete and propose an on-line heuristic to effectively re-distribute dataset and tasks, which potentially balances the workload among data centers and optimizes the overall response time. Experiments show that our algorithm has a significant performance improvement which covers wide range of data distribution, and could reduce up to 55% job response time on average.
机译:随着大数据应用程序的飞速发展,越来越多的数据分析基于地理分布的数据中心。最近的工作主要集中在任务和数据放置上,以减少这些地理分布的数据中心之间的数据传输。在本文中,我们认为任务执行延迟也可能影响响应时间,尤其是在热点数据中心中。我们定义了地理分布的工作负载感知调度问题,旨在最大程度地减少数据传输和任务执行的总体延迟。然后,我们证明它是NP完全的,并提出了一种在线启发式方法来有效地重新分配数据集和任务,这有​​可能平衡数据中心之间的工作量并优化总体响应时间。实验表明,我们的算法具有显着的性能提升,涵盖了广泛的数据分布范围,平均可减少多达55%的作业响应时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号