首页> 外文期刊>Services Computing, IEEE Transactions on >Coordinating Workload Scheduling of Geo-Distributed Data Centers and Electricity Generation of Smart Grid
【24h】

Coordinating Workload Scheduling of Geo-Distributed Data Centers and Electricity Generation of Smart Grid

机译:智能电网地理分布式数据中心和发电的协调工作量调度

获取原文
获取原文并翻译 | 示例

摘要

With the rapidly increasing computing demand, data centers become more and more power-hungry, which incurs substantial electricity cost. Meanwhile, due to the time-dependent demand preference, power grid is suffering high load variations, which results in a large profit loss. In this paper, we consider a cost-efficient workload scheduling with a coordination between a cloud service provider operating multiple geo-distributed data centers and smart grids. The aim is to explore the flexibility of data center power demands to reduce the cost of the cloud service provider and smooth the load variations of smart grids simultaneously. We first present the penalty model of the computation workload scheduling at each data center, and introduce the cost model of smart grids, including power generation cost and the cost due to the power load variations. To jointly minimize the cost of smart grids and penalty of the cloud service provider resulted from workload scheduling, we formulate the objective function as a weighted sum of the cost and the penalty to study the tradeoffs, and obtain the optimal offline solution by the dual decomposition technique. In order to make the coordination implemented in an online fashion, we propose a Receding Horizon Control (RHC) based online algorithm to obtain the suboptimal workload management based on the predicted information, including the future amounts of interactive workload, batch workload, and power load, in the prediction horizon. The simulation results show that with the coordination between the cloud service provider and smart grids, the cost of smart grids can be significantly reduced, by up to 20 percent, and the load variations of smart grids can be well smoothed simultaneously.
机译:随着计算需求的迅速增加,数据中心变得越来越有力,令人兴奋,这是大量的电力成本。同时,由于时间依赖性要求偏好,电网遭受高负荷变化,这导致较大的损益。在本文中,我们考虑了一种具有成本高效的工作负载调度,其在运行多个地理分布式数据中心和智能网格之间的云服务提供商之间的协调。目的是探讨数据中心功率需求的灵活性,以降低云服务提供商的成本,并同时平滑智能电网的负载变化。我们首先介绍每个数据中心的计算工作负载调度的惩罚模型,并引入智能电网的成本模型,包括发电成本和由于电力负载变化而导致的成本。为了共同最大限度地降低云服务提供商的智能电网和惩罚所产生的工作量调度,我们将客观函数作为成本的加权之金和学习权衡的惩罚,并通过双重分解获得最佳的离线解决方案技术。为了使协调以在线方式实现,我们提出了基于地平线控制(RHC)的在线算法,以基于预测信息获得次优工作负载管理,包括未来的交互式工作负载,批量工作负载和电源负载,在预测地平线中。仿真结果表明,随着云服务提供商和智能电网之间的协调,智能电网的成本可以明显减少,高达20%,智能电网的负载变化可以同时平滑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号