首页> 外文OA文献 >CMP-Neu5Ac Hydroxylase Null Mice as a Model for Studying Metabolic Disorders Caused by the Evolutionary Loss of Neu5Gc in Humans
【2h】

CMP-Neu5Ac Hydroxylase Null Mice as a Model for Studying Metabolic Disorders Caused by the Evolutionary Loss of Neu5Gc in Humans

机译:CMP-NEU5AC羟化酶含氟小鼠作为研究由人类的NEU5GC进化丧失引起的代谢障碍的模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The purpose of this study was to identify the modification/turnover of gene products that are altered in humans due to evolutionary loss of Neu5Gc. CMP-Neu5Ac hydroxylase- (Cmah-) deficient mice show the infiltration of Kupffer cells within liver sinusoids, whereas body and liver weight develop normally. Pathway analysis by use of Illumina MouseRef-8 v2 Expression BeadChip provided evidence that a number of biological pathways, including the glycolysis, gluconeogenesis, TCA cycle, and pentose phosphate pathways, as well as glycogen metabolism-related gene expression, were significantly upregulated in Cmah-null mice. The intracellular glucose supply in Cmah-null mice resulted in mitochondrial dysfunction, oxidative stress, and the advanced glycation end products accumulation that could further induce oxidative stress. Finally, low sirtuin-1 and sirtuin-3 gene expressions due to higher NADH/NAD in Cmah-null mice decreased Foxo-1 and MnSOD gene expression, suggesting that oxidative stress may result in mitochondrial dysfunction in Cmah-null mouse. The present study suggests that mice with CMAH deficiency can be taken as an important model for studying metabolic disorders in humans.
机译:本研究的目的是鉴定由于NEU5GC的进化损失而在人类中改变的基因产物的修饰/营业额。 CMP-Neu5ac羟化酶 - (CMAH-)缺陷小鼠表明肝脏正弦骨内Kupffer细胞的渗透,而体内和肝脏重量通常会发生。通过使用illumina mouseref-8 v2表达珠芯片提供了证据表明了许多生物途径,包括糖酵解,葡糖生成,tca循环和磷酸磷酸磷途径以及糖原代谢相关的基因表达,在CMAh中显着上调-null小鼠。 CMAH - 核小鼠的细胞内葡萄糖供应导致线粒体功能障碍,氧化应激,以及可以进一步诱导氧化应激的高级糖糖末端产物积累。最后,由于CMAH-NULL小鼠的较高NADH / NAD,低SIRTUIN-1和SIRTUIN-3基因表达减少了FOXO-1和MNSOD基因表达,表明氧化应激可能导致CMAH-NULL鼠中的线粒体功能障碍。本研究表明,具有CMAH缺乏的小鼠可以作为研究人类代谢障碍的重要模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号