首页> 外文OA文献 >Protein degradation in a TX-TL cell-free expression system using ClpXP protease
【2h】

Protein degradation in a TX-TL cell-free expression system using ClpXP protease

机译:使用ClpXP蛋白酶的TX-TL无细胞表达系统中的蛋白质降解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An in vitro S30-based Escherichia coli expression system (“Transcription-Translation”, or “TX-TL”) has been developed as an alternative prototyping environment to the cell for synthetic circuits [1-5]. Basic circuit elements, such as switches and cascades, have been shown to function in TX-TL, as well as bacteriophage assembly [2, 6]. Circuits can also be prototyped from basic parts within 8 hours, avoiding cloning and transformation steps [7]. However, most published results have been obtained in a “batch mode” reaction, where factors that play an important role for in vivo circuit dynamics – namely protein degradation and protein dilution – are severely hindered or are not present. This limits the complexity of circuits built in TX-TL without steady-state or continuous-flow solutions [8-10]. However, alternate methods that enable dilution either require extra equipment and expertise or demand lower reaction throughput. We explored the possibility of supplementing TX-TL with ClpXP, an AAA+ protease pair that selectively degrades tagged proteins [11], to provide finely-tuned degradation. The mechanism of ClpXP degradation has been extensively studied both in vitro and in vivo [12-15]. However, it has not been characterized for use in synthetic circuits – metrics such as toxicity, ATP usage, degradation variation over time, and cellular loading need to be determined. In particular, TX-TL in batch mode is known to be resource limited [16], and ClpXP is known to require significant amounts of ATP to unfold different protein targets [17, 18]. We find that ClpXP’s protein degradation dynamics is dependent on protein identity, but can be determined experimentally. Degradation follows Michaels-Menten kinetics, and can be fine tuned by ClpX or ClpP concentration. Added purified ClpX is also not toxic to TX-TL reactions. Therefore, ClpXP provides a controllable way to introduce protein degradation and dynamics into synthetic circuits in TX-TL.
机译:已经开发了基于体外S30的大肠杆菌表达系统(“转录翻译”或“ TX-TL”),作为合成电路细胞的替代原型环境[1-5]。基本的电路元件,例如开关和级联,已显示在TX-TL和噬菌体组件中起作用[2,6]。电路也可以在8小时内从基本零件中原型化,从而避免了克隆和转换步骤[7]。但是,大多数公开的结果都是通过“分批模式”反应获得的,其中对于体内循环动力学起重要作用的因素(即蛋白质降解和蛋白质稀释)受到严重阻碍或不存在。这限制了没有稳态或连续流解决方案的TX-TL内置电路的复杂性[8-10]。但是,能够稀释的替代方法需要额外的设备和专业知识,或者需要较低的反应通量。我们探索了用ClpXP补充TX-TL的可能性,ClpXP是一种AAA +蛋白酶对,可以选择性地降解标记的蛋白[11],以提供微调的降解。 ClpXP降解的机制已在体外和体内进行了广泛的研究[12-15]。但是,它还没有在合成电路中使用的特性–需要确定诸如毒性,ATP使用,降解随时间变化以及细胞负载等指标。特别是,批量模式下的TX-TL已知资源有限[16],而ClpXP则需要大量的ATP才能展开不同的蛋白质靶标[17,18]。我们发现ClpXP的蛋白质降解动力学取决于蛋白质的同一性,但可以通过实验确定。降解遵循Michaels-Menten动力学,可以通过ClpX或ClpP浓度进行微调。添加的纯化的ClpX对TX-TL反应也无毒。因此,ClpXP提供了一种可控制的方法,可以将蛋白质降解和动力学引入TX-TL的合成电路中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号