首页> 外文OA文献 >Deep Regionlets for Object Detection
【2h】

Deep Regionlets for Object Detection

机译:对象检测的深度区域

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A key challenge in generic object detection is being to handle largevariations in object scale, poses, viewpoints, especially part deformationswhen determining the location for specified object categories. Recent advancesin deep neural networks have achieved promising results for object detection byextending the traditional detection methodologies using the convolutionalneural network architectures. In this paper, we make an attempt to incorporateanother traditional detection schema, Regionlet into an end-to-end trained deeplearning framework, and perform ablation studies on its behavior on multipleobject detection datasets. More specifically, we propose a "region selectionnetwork" and a "gating network". The region selection network serves as aguidance on where to select regions to learn the features from. Additionally,the gating network serves as a local feature selection module to select andtransform feature maps to be suitable for detection task. It acts as softRegionlet selection and pooling. The proposed network is trained end-to-endwithout additional efforts. Extensive experiments and analysis on the PASCALVOC dataset and Microsoft COCO dataset show that the proposed frameworkachieves comparable state-of-the-art results.
机译:通用对象检测中的一个关键挑战是在确定指定对象类别的位置时处理对象缩放,姿势,视点,尤其是部分变形的大挑战。最近的宣传深度神经网络已经通过卷积网络架构延伸了传统检测方法的对象检测的有希望的结果。在本文中,我们试图将传统的检测模式集成为端到端训练的解放框架,并对其在多元object检测数据集上的行为进行消融研究。更具体地,我们提出了一个“区域选择性网络”和“门控网络”。该区域选择网络在选择区域以便学习该功能的位置是庆祝。另外,选通网络用作本地特征选择模块,以选择和特征特征映射以适合于检测任务。它充当SoftRegionlet选择和汇集。建议的网络训练结束终止额外的努力。对Pascalvoc数据集和Microsoft Coco DataSet进行了广泛的实验和分析,表明提出的FrameworkachSves可比最先进的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号