【24h】

Regionlets for Generic Object Detection

机译:通用对象检测的Regionlet

获取原文
获取原文并翻译 | 示例

摘要

Generic object detection is confronted by dealing with different degrees of variations, caused by viewpoints or deformations in distinct object classes, with tractable computations. This demands for descriptive and flexible object representations which can be efficiently evaluated in many locations. We propose to model an object class with a cascaded boosting classifier which integrates various types of features from competing local regions, each of which may consist of a group of subregions, named as . A regionlet is a base feature extraction region defined proportionally to a detection window at an arbitrary resolution (i.e., size and aspect ratio). These regionlets are organized in small groups with stable relative positions to be descriptive to delineate fine-grained spatial layouts inside objects. Their features are aggregated into a one-dimensional feature within one group so as to be flexible to tolerate deformations. The most discriminative regionlets for each object class are selected through a boosting learning procedure. Our regionlet approach achieves very competitive performance on popular multi-class detection benchmark datasets with a single method, without any context. It achieves a detection mean average precision of 41.7 percent on the PASCAL VOC 2007 dataset, and 39.7 percent on the VOC 2010 for 20 object categories. We further develop to efficiently augment regionlet features with the responses learned by deep convolutional neural networks. Our regionlet based method won second place in the ImageNet Large Scale Visual Object Recognition Challenge (ILSVRC 2013).
机译:通用对象检测面临着不同程度的变化(由不同对象类中的视点或变形引起的变化)以及易于处理的计算。这就要求可以在许多位置进行有效评估的描述性和灵活的对象表示形式。我们建议使用级联提升分类器对对象类进行建模,该分类器集成了来自竞争本地区域的各种类型的特征,每个特征可能由一组称为的子区域组成。区域小区域是在任意分辨率(即大小和长宽比)下与检测窗口成比例定义的基本特征提取区域。这些小区域以相对的相对位置分成小组,以描述对象内部细粒度的空间布局。它们的特征汇总为一组内的一维特征,以便灵活地容忍变形。通过加强学习过程,为每个对象类别选择最具区分性的区域。我们的Regionlet方法在没有任何上下文的情况下,通过一种方法就可以在流行的多类检测基准数据集上获得非常有竞争力的性能。对于20个对象类别,它在PASCAL VOC 2007数据集上的检测平均平均精度为41.7%,在VOC 2010上为39.7%。我们进一步发展以通过深度卷积神经网络学习的响应来有效地增强区域特征。我们基于区域的方法在ImageNet大规模视觉对象识别挑战赛(ILSVRC 2013)中获得了第二名。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号