首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Deep Regionlets: Blended Representation and Deep Learning for Generic Object Detection
【24h】

Deep Regionlets: Blended Representation and Deep Learning for Generic Object Detection

机译:深度区域:通用物体检测的混合表示和深度学习

获取原文
获取原文并翻译 | 示例

摘要

In this article, we propose a novel object detection algorithm named "Deep Regionlets" by integrating deep neural networks and a conventional detection schema for accurate generic object detection. Motivated by the effectiveness of regionlets for modeling object deformations and multiple aspect ratios, we incorporate regionlets into an end-to-end trainable deep learning framework. The deep regionlets framework consists of a region selection network and a deep regionlet learning module. Specifically, given a detection bounding box proposal, the region selection network provides guidance on where to select sub-regions from which features can be learned from. An object proposal typically contains three - 16 sub-regions. The regionlet learning module focuses on local feature selection and transformations to alleviate the effects of appearance variations. To this end, we first realize non-rectangular region selection within the detection framework to accommodate variations in object appearance. Moreover, we design a "gating network" within the regionlet leaning module to enable instance dependent soft feature selection and pooling. The Deep Regionlets framework is trained end-to-end without additional efforts. We present ablation studies and extensive experiments on the PASCAL VOC dataset and the Microsoft COCO dataset. The proposed method yields competitive performance over state-of-the-art algorithms, such as RetinaNet and Mask R-CNN, even without additional segmentation labels.
机译:在本文中,我们提出了一种新的对象检测算法,通过集成深神经网络和用于精确通用对象检测的传统检测模式,提出了名为“深度区域”的新型对象检测算法。通过区域为对象变形和多个纵横比的区域的有效性,我们将区域纳入端到端可训练的深度学习框架。深度区域框架包括区域选择网络和深度区域学习模块。具体地,给定检测限定框提议,区域选择网络为从中选择可以从中学习特征的子区域提供指导。对象提案通常包含三个 - 16个子区域。地区学习模块侧重于本地特征选择和转换,以减轻外观变化的影响。为此,我们首先在检测框架内实现非矩形区域选择以适应物体外观的变化。此外,我们在区域内倾斜模块中设计了“Gating网络”,以使实例相关的软特征选择和汇集。深度区域框架训练结束于终端,而无需额外的努力。我们在Pascal VOC数据集和Microsoft Coco DataSet上展示了消融研究和广泛的实验。所提出的方法即使没有额外的分割标签,也可以通过最先进的算法(例如Retinanet和掩模R-CNN)产生竞争性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号