首页> 外文OA文献 >Three-Dimensional Force Prediction of a Flexible Tactile Sensor Based on Radial Basis Function Neural Networks
【2h】

Three-Dimensional Force Prediction of a Flexible Tactile Sensor Based on Radial Basis Function Neural Networks

机译:基于径向基函数神经网络的柔性触觉传感器的三维力预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A flexible tactile sensor array with 6×6 N-type sensitive elements made of conductive rubber is presented in this paper. The property and principle of the tactile sensor are analyzed in detail. Based on the piezoresistivity of conductive rubber, this paper takes full advantage of the nonlinear approximation ability of the radial basis function neural network (RBFNN) method to approach the high-dimensional mapping relation between the resistance values of the N-type sensitive element and the three-dimensional (3D) force and to accomplish the accurate prediction of the magnitude of 3D force loaded on the sensor. In the prediction process, the k-means algorithm and recursive least square (RLS) method are used to optimize the RBFNN, and the k-fold cross-validation method is conducted to build the training set and testing set to improve the prediction precision of the 3D force. The optimized RBFNN with different spreads is used to verify its influence on the performance of 3D force prediction, and the results indicate that the spread value plays a very important role in the prediction process. Then, sliding window technology is introduced to build the RBFNN model. Experimental results show that setting the size of the sliding window appropriately can effectively reduce the prediction error of the 3D force exerted on the sensor and improve the performance of the RBFNN predictor, which means that the sliding window technology is very feasible and valid in 3D force prediction for the flexible tactile sensor. All of the results indicate that the optimized RBFNN with high robustness can be well applied to the 3D force prediction research of the flexible tactile sensor.
机译:本文提出了一种柔性触觉传感器阵列,采用6×6型敏感元件制成的导电橡胶。详细分析了触觉传感器的性质和原理。基于导电橡胶的压阻性,本文充分利用了径向基函数神经网络(RBFNN)方法的非线性近似能力,以接近N型敏感元件的电阻值与该方法之间的高维映射关系三维(3D)力和实现传感器上装载的3D力大小的精确预测。在预测过程中,K-Means算法和递归最小二乘(RLS)方法用于优化RBFNN,并进行K折交叉验证方法以构建训练集和测试集以提高预测精度3D力量。具有不同扩展的优化RBFNN用于验证其对3D力预测性能的影响,结果表明扩展值在预测过程中起着非常重要的作用。然后,引入了滑动窗技术来构建RBFNN模型。实验结果表明,设置滑动窗口的尺寸可以有效地降低传感器上施加的3D力的预测误差,提高RBFNN预测器的性能,这意味着滑动窗技术在3D力中非常可行,有效柔性触觉传感器的预测。所有结果表明,具有高稳健性的优化RBFNN可以很好地应用于柔性触觉传感器的3D力预测研究。

著录项

  • 作者

    Feilu Wang; Yang Song;

  • 作者单位
  • 年度 2021
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号