首页> 外文OA文献 >Bayesian optimization with safety constraints: safe and automatic parameter tuning in robotics
【2h】

Bayesian optimization with safety constraints: safe and automatic parameter tuning in robotics

机译:安全限制贝叶斯优化:机器人中安全和自动参数调整

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Robotics algorithms typically depend on various parameters, the choice ofwhich significantly affects the robot's performance. While an initial guess forthe parameters may be obtained from dynamic models of the robot, parameters areusually tuned manually on the real system to achieve the best performance.Optimization algorithms, such as Bayesian optimization, have been used toautomate this process. However, these methods may evaluate parameters duringthe optimization process that lead to safety-critical system failures.Recently, a safe Bayesian optimization algorithm, called SafeOpt, has beendeveloped and applied in robotics, which guarantees that the performance of thesystem never falls below a critical value; that is, safety is defined based onthe performance function. However, coupling performance and safety is notdesirable in most cases. In this paper, we define separate functions forperformance and safety. We present a generalized SafeOpt algorithm that, givenan initial safe guess for the parameters, maximizes performance but onlyevaluates parameters that satisfy all safety constraints with high probability.It achieves this by modeling the underlying and unknown performance andconstraint functions as Gaussian processes. We provide a theoretical analysisand demonstrate in experiments on a quadrotor vehicle that the proposedalgorithm enables fast, automatic, and safe optimization of tuning parameters.Moreover, we show an extension to context- or environment-dependent, safeoptimization in the experiments.
机译:机器人算法通常依赖于各种参数,因此可以显着影响机器人的性能。虽然可以从机器人的动态模型获得初始猜测参数,但是在真实系统上手动调整的参数以实现最佳性能。优化算法,例如贝叶斯优化,已被用于该过程。但是,这些方法可以在优化过程中评估参数,这些过程导致安全关键系统故障。因此,一种被称为safeopt的安全贝叶斯优化算法已经开始和应用于机器人,保证了中文的性能永远不会低于临界值。 ;也就是说,基于性能函数定义了安全性。然而,在大多数情况下,不可准于耦合性能和安全性。在本文中,我们定义了不推动和安全性的单独功能。我们介绍了一个广义safeopt算法,授予初始安全猜测参数,最大化性能,但唯一只能以满足高概率满足所有安全约束的参数。它通过将底层和未知的性能和阳台函数建模为高斯过程来实现这一目标。我们提供了一个理论分析和在高级车辆上的实验中演示,该支持型古董算法能够快速,自动,安全优化调整参数.Orouse,我们显示了实验中的上下文或环境所依赖的,避免优化的扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号