首页> 外文OA文献 >DELINEATION WATER OF PEARL RIVER BASIN USING LANDSAT IMAGES FROM GOOGLE EARTH ENGINE
【2h】

DELINEATION WATER OF PEARL RIVER BASIN USING LANDSAT IMAGES FROM GOOGLE EARTH ENGINE

机译:珠江盆地的描绘水使用谷歌地球发动机的土地上的图像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Surface water plays an important role in ecological circulation. Global climate change and urbanization affect the distribution and quality of water. In order to obtain surface water information quickly and accurately, this study uses Google Earth Engine (GEE) as a data processing tool, 309 Landsat 8 series images from 2016 to 2019 are selected to calculate 4 different water indexes, including Normalized Difference Water Index (NDWI), Modified NDWI (MNDWI), Automated Water Extraction Index (AWEIsh) and Multi- Band Water Index (MBWI) to extract surface water in Pearl River Basin. In order to remove the influence of other ground objects, Normalized Vegetation Index (NDVI), Normalized Difference Building Index (NDBI) and Digital Surface Model (DSM) are combined with the above four water indexes, and threshold segmentation is used to eliminate the influence of vegetation, buildings and mountains. Finally, take the advantage of morphological filtering algorithm to eliminate non-water pixels. The results show that GEE is able to extract surface water in a very short time; AWEIsh has the highest overall accuracy of 94.12%, which is 7.20% higher than the classical NDWI method; There is no significant difference in the width and shape of rivers from 2015 to 2018; The locations of the rivers extracted by the four methods are consistent with the 1 : 100,000 river system basic data of 2015 provided by the Ministry of Water Resources of the People’s Republic of China.
机译:地表水在生态循环中起着重要作用。全球气候变化和城市化会影响水的分布和质量。为了快速准确地获得地面水信息,本研究采用谷歌地球发动机(GEE)作为数据处理工具,从2016到2019年开始,309 Landsat 8系列图像被选中以计算4种不同的水指标,包括归一化差异水指数( NDWI),改进的NDWI(MNDWI),自动化水提取指数(令人敬畏)和多带水指数(MBWI),以提取珠江盆地地表水。为了消除其他地面物体的影响,归一化植被指数(NDVI),归一化差分建筑指数(NDBI)和数字表面模型(DSM)与上述四个水指数组合,并且使用阈值分割来消除影响植被,建筑物和山脉。最后,采取形态过滤算法的优势消除非水像素。结果表明,GEE能够在很短的时间内提取地表水;令人敬畏的总体准确性为94.12%,比古典NDWI方法高7.20%; 2015年至2018年河的宽度和形状没有显着差异;四种方法提取的河流的位置与中华人民共和国水资源部提供的1:100,000河流系统基本数据一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号