首页> 外文OA文献 >User Embedding for Rating Prediction in SVD++-Based Collaborative Filtering
【2h】

User Embedding for Rating Prediction in SVD++-Based Collaborative Filtering

机译:基于SVD ++的协作滤波中的额定预测用户嵌入

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The collaborative filtering algorithm based on the singular value decomposition plus plus (SVD++) model employs the linear interactions between the latent features of users and items to predict the rating in the recommendation systems. Aiming to further enrich the user model with explicit feedback, this paper proposes a user embedding model for rating prediction in SVD++-based collaborative filtering, named UE-SVD++. We exploit the user potential explicit feedback from the rating data and construct the user embedding matrix by the proposed user-wise mutual information values. In addition, the user embedding matrix is added to the existing user bias and implicit parameters in the SVD++ to increase the accuracy of the user modeling. Through extensive studies on four different datasets, we found that the rating prediction performance of the UE-SVD++ model is improved compared with other models, and the proposed model’s evaluation indicators root-mean-square error (RMSE) and mean absolute error (MAE) are decreased by 1.002−2.110% and 1.182−1.742%, respectively.
机译:基于奇异值分解加上加(SVD ++)模型的协作过滤算法采用用户和项目的潜在特征之间的线性交互来预测推荐系统中的评级。旨在通过显式反馈来进一步丰富用户模型,本文提出了一种用户嵌入模型,用于SVD ++的协作滤波中的评级预测,名为UE-SVD ++。我们利用来自评级数据的用户潜在的明确反馈,并通过所提出的用户 - 方向相互信息值构建用户嵌入矩阵。另外,用户嵌入矩阵被添加到SVD ++中的现有用户偏置和隐式参数,以提高用户建模的准确性。通过对四个不同的数据集进行广泛的研究,我们发现与其他模型相比,UE-SVD ++模型的评级预测性能得到改善,以及所提出的模型的评估指标根均方误差(RMSE)和平均误差(MAE)分别下降1.002-2.110%和1.182-1.742%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号